Библиотека для работы с lcd дисплеями. Работа с символьным ЖКИ на базе контроллера HD44780. Создание собственных символов для ЖК дисплея

Часто пользователю требуется получать некоторую визуальную информацию с электронного устройства. Если информация может быть представлена в символьном виде, то одним из вариантов ее отображения является использование символьных жидко-кристаллических индикаторов (ЖКИ, или LCD в иностранном обозначении). Сегодня речь пойдет о символьных индикаторах, реализованных на базе контроллеров Hitachi HD44780, Samsung KS 0066 и аналогичных.

В качестве примера я буду рассматривать ЖКИ Winstar Wh1602D-TMI-CT# , имеющийся у меня для проведения экспериментов. Я уже упоминал этот ЖКИ в статье , графическими наработками которой я сегодня и воспользуюсь.

Подробный datasheet к LCD WINSTAR WH1602D-TMI-CT :

Category: Documents
Date: 22.03.2015

Упрощенно схему ЖКИ можно представить следующим образом:

Основой индикатора является жидко-кристаллическая матрица, подавая напряжение на элемент которой, мы можем наблюдать точку на экране. В символьных ЖКИ эта матрица состоит из определенного количества знакомест, которые группируются по строкам и столбцам. Размер знакоместа в пикселях часто составляет 5×8 точек. Маркировка моего индикатора содержит цифры 1602 и это означает, что мой индикатор может отображать 2 строки по 16 символов в каждой. Также кодировка включает: код производителя и тип индикатора, наличие подсветки, цвет, кодовую таблицу и так далее.

Система обозначений индикаторов WINSTAR

Показать/скрыть расшифровку обозначений

1. Код производителя : WINSTAR DISPLAY CO, LTD

2. Тип индикатора:

  • H — символьный (знакосинтезирующий)
  • C - графический цветной с пассивной матрицей CSTN (ColorSTN )
  • X — графический с матрицей TAB (Tape Automatic Bonding – кристалл монтируется на трёхслойной полиамидной подложке-ленте)
  • O - графический c матрицей COG (Chip On Glass - кристалл на стекле)

3. Горизонтальное разрешение:

  • число символов в строке для индикаторов символьного типа
  • число точек по горизонтали для индикаторов графического типа

4. Вертикальное разрешение:

  • число строк для индикаторов символьного типа
  • число точек по вертикали для индикаторов графического типа

5. Код модели

  • Кодирует геометрические размеры, используемый контроллер

6. Тип подсветки:

  • N — без подсветки
  • B - электролюминисцентная, цвет свечения — синий
  • D - электролюминисцентная, цвет свечения — зеленый
  • W - электролюминисцентная, цвет свечения - белый
  • Y — светодиодная, цвет свечения — желто-зеленый
  • A — светодиодная, цвет свечения — янтарный
  • R — светодиодная, цвет свечения — красный
  • G — светодиодная, цвет свечения — зеленый
  • T — светодиодная, цвет свечения — белый
  • P — светодиодная, цвет свечения - синий
  • F — лампа с холодным катодом (CCFL), цвет свечения — белый

7. Технология изготовления ЖК

  • B - TN серый, позитив
  • N — TN, негатив
  • G - STN серый, позитив
  • Y — STN желто-зеленый, позитив
  • M — STN синий, негатив
  • F — FSTN позитив
  • T - FSTN негатив
  • H - HTN серый, позитив
  • I — HTN черный, негатив
  • TN (Twisted Nematic) — структура кристаллов имеет спиралевидный тип
  • STN (Super Twisted Nematic ) - матрица, состоящая из ЖК-элементов с изменяемой прозрачностью
  • FSTN (Film Compensated STN ) — STN -матрица c пленочной компенсацией. Технология позволяет получить увеличенный угол обзора
  • HTN (Homeotropic Twisted Nematic ) - дисплеи основаны на более сильном молекулярном закручивании (обычно 110°) по сравнению с обычными скрученными нематиками TN (90°). Дают широкий угол обзора и улучшенную контрастность. По характеристикам превосходят STN –технологию. Низкое рабочее напряжение (2.5В и самая низкая стоимость среди нематиков делают их использование выгодным в переносных автономных устройствах).

8. Поляризатор, угол обзора, рабочий температурный диапазон

  • A — RF, 6:00, N.T.
  • D - RF, 12:00, N.T.
  • G - RF, 6:00, W.T.
  • J — RF, 12:00, W.T.
  • B — TF, 6:00, N.T.
  • E — TF, 12:00, N.T.
  • H — TF, 6:00, W.T.
  • K — TF, 12:00, W.T.
  • C — TM, 6:00, N.T.
  • F — TM, 12:00, N.T.
  • I — TM, 6:00, W.T.
  • L - TM, 12:00, W.T.
  • RF (Reflective LCD ) — ЖК индикатор, работающий исключительно на отражении света. Изображение видно только при достаточном внешнем освещении.
  • TF - (Transflective LCD ) -жидкокристаллический дисплей, который как отражает свет, так и испускает его (светится самостоятельно).
  • TM (Transmissive LCD ) - свет поступает сквозь LCD со стороны задней подсветки. Имеет высокое качество изображения в помещении и обычно очень низкое (черный экран) при солнечном свете.
  • N.T. — нормальный температурный диапазон 0...+50ºC W.T. — расширенный температурный диапазон -20...+70ºC

9. Дополнительные опции

Первые два символа — знакогенератор:

  • CT /CP — латиница/кириллица
  • EP /ET /EE /EN /EC /ES — латиница/европейский
  • JP /JT /JS /JN — латиница/японский
  • HP /HS — иврит

3-4 символы:

  • T - температурная компенсация
  • E или EZ — edge BL (светодиоды подсветки расположены по периметру). Также символ может отсутствовать.
  • K или LB — eco BL (светодиоды расположены сзади экрана равномерно)
  • V — встроенный источник отрицательного напряжения
  • N — без встроенного источника отрицательного напряжения

10. Дополнительная информация:

# — совместимость со стандартом RoHS

Примечание (производитель микросхемы контроллера):

  • xS - Samsung
  • xP - Sunplus
  • xT - Sitronix
  • xE - Epson
  • xU - UMC

Пользуясь этой системой обозначений я выяснил, что у меня в руках оказался знакосинтезирующий индикатор Winstar , отображающий символы в 16 столбцов и 2 строки, использующий контроллер KS 0066 или его аналог, со светодиодной подсветкой белого цвета по периметру, с синей негативной transmissive -матрицей, углом обзора «на 6 часов», рабочим диапазоном температур -20...+70ºC со знакогенератором, включающим кириллицу и совместимый со стандартом RoHS (не содержит вредных для здоровья компонентов, по всей видимости это означает, что при сборке использовался бессвинцовый припой).

Индикаторы на базе контроллеров HD44780 , KS066U

Управляет работой индикатора встроенный контроллер. В качестве контроллера обычно выступает Hitachi HD44780 , Samsung KS0066U или же их многочисленные аналоги и клоны. В индикаторах, производимых российской компанией МЭЛТ используется контроллер PCF8576.

У контроллера есть однобайтные ячейки памяти (DDRAM ), содержимое которых собственно отображается на экране согласно таблице записанной в CGRAM . Ячеек памяти обычно больше чем знакомест в ЖКИ, поэтому адресацию знакомест нужно смотреть в datasheet . Нам необходимо в нужную позицию записать код требуемого символа, а все остальное контроллер сделает сам.

Для выбора позиции существует виртуальный, управляемый посредством команд курсор (номер текущей ячейки памяти, АС ). Его можно сделать видимым. По умолчанию, при записи символа в ячейку, курсор сдвигаеться вперед на одну позицию.

Кодовая таблица индикатора, как правило состоит из трёх частей:

  • 0×00-0×07 — загружаемый знакогенератор, символы созданные вами
  • 0×20-0xFF — ASCII коды стандартный набор символов и английский алфавит
  • 0xA0-0xFF — символы национальных алфавитов и иные, с пропуском символов совпадающих по начертанию с английскими.

Показать/скрыть кодовую таблицу, с кириллицей

Пример: шестнадцатеричный код 0x4A соответствует букве J , код 0xB6 — букве ж .

Старшие четыре бита определяют столбец выбранного символа в таблице, младшие – строку. Можно создать свою собственную таблицу символов, записав ее в CGRAM . На каждый символ требуется 5 байт (на столбец по байту). Единицы в каждом байте определяют значимые пиксели. Например, для кодирования попиксельно цифры 8 потребуется такая последовательность: 0x6c,0×92,0×92,0×92,0x6c.

Конвертер кириллицы

Для преобразования текста, содержащего символы кириллицы в коды, соответствующие приведенной выше таблице, введите требуемый текст в текстовое поле. Полученный ниже результат можно скопировать и использовать в своих программах для вывода этого текста на ЖКИ.

Исходный текст:

Кодированный текст:

Таблица кодов команд:

D7 D6 D5 D4 D3 D2 D1 D0 Назначение
0 0 0 0 0 0 0 1 Очистка экрана, AC =0, адресация AC на DDRAM
0 0 0 0 0 0 1 AC =0, адресация на DDRAM , сброшены сдвиги, начало строки адресуется в начале DDRAM
0 0 0 0 0 1 I/D S Выбирается направление сдвига курсора или экрана
0 0 0 0 1 D C B Выбирается режим отображения
0 0 0 1 S/C R/L Команда сдвига курсора/экрана
0 0 1 DL N F Определение параметров развертки и ширины шины данных
0 1 AC5 AC4 AC3 AC2 AC1 AC0 Присвоение счетчику AC адреса в области CGRAM
1 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Присвоение счетчику AC адреса в области DDRAM

Таблица значений флагов:

Флаг Значение
I/D Режим смещения счетчика адреса AC, 0 — уменьшение, 1 — увеличение
S Флаг режима сдвига содержимого экрана. 0 — сдвиг экрана не производится, 1 — после записи в DDRAM очередного кода экран сдвигается в направлении, определяемом флагом I/D: 0 — вправо, 1 — влево. При сдвиге не производится изменение содержимого DDRAM. Изменяются только внутренние указатели расположения видимого начала строки в DDRAM
S/C Флаг-команда, производящая вместе с флагом R/L операцию сдвига содержимого экрана (так же, как и в предыдущем случае, без изменений в DDRAM) или курсора. Определяет объект смещения: 0 — сдвигается курсор, 1 — сдвигается экран
R/L Флаг-команда, производящая вместе с флагом S/C операцию сдвига экрана или курсора. Уточняет направление сдвига: 0 — влево, 1 — вправо
D/L Флаг, определяющий ширину шины данных: 0 — 4 разряда, 1 — 8 разрядов
N Режим развертки изображения на ЖКИ: 0 — одна строка,1 — две строки
F Размер матрицы символов: 0 — 5×8 точек, 1 — 5×10 точек
D Наличие изображения: 0 — выключено, 1 — включено
C Курсор в виде символа подчеркивания: 0 — выключен, 1 — включен
B Курсор в виде мерцающего знакоместа: 0 — выключен, 1 — включен

Назначение выводов контроллера:

  • DB0 -DB7 — отвечают за входящие/исходящие данные
  • RS — высокий уровень означает, что сигнал на выходах DB0-DB7 является данными, низкий — командой
  • W/R — определяет направление данных (чтение/запись). Так как операция чтения данных из индикатора обычно бывает невостребованной, то можно установить постоянно на этом входе низкий уровень
  • E — импульс длительностью не менее 500 мс на этом выводе определяет сигнал для чтения/записи данных с выводов DB0-DB7, RS и W/R
  • V 0 — используется для задания контраста изображения
  • A, K — питание подсветки (анод и катод), если она имеется
  • V CC и GND — питание ЖК-индикатора

Для управления ЖК-индикатором необходимо 6 или 10 выводов , в зависимости от того, выбран 4 или 8 битный режим обмена данными. Для сокращения требуемого числа выводов микроконтроллера можно работать в 4-битном режиме. В этом случае, на выводах DB4 -DB7 индикатора сначала будет передаваться старшие четыре бита данных/команды, затем — младшие четыре бита. Выводы DB0 -DB3 останутся незадействованными.

Один контроллер управляет ограниченным числом символов. На плате индикатора может быть 1, 2, 4, 8 контроллеров, а возможно — и больше.

Документация на контроллеры:

Контроллер Samsung KS0066U

Контроллер Hitachi HD44780

Category: Documents
Date: 21.03.2015

переведенный на русский язык вариант:

Category: Documents
Date: 21.03.2015

Индикаторы различных производителей часто совместимы и взаимозаменяемы, но могут отличаться габаритами, креплением, контактами и прочим. Поэтому при выборе для новой разработки и поиске замены обращайтесь к каталогам производителей:

Таблица совместимости символьных ЖК-индикаторов разных производителей:

Показать/скрыть таблицу

Тип Winstar МЭЛТ Data Vision Bolymin Sunlike Microtips Wintek Ampire
8×2 WH0802A MT-8S2A DV-0802 BC0802A SC0802A MTC-0802X WM-C0802M AC082A
10×1 MT-10S1
12×2 WH1202A BC1202A
16×1 WH1601A DV-16100 BC1601A1 SC1601A MTC-16100X WM-C1601M AC161A
WH1601B BC1601B SC1601B
WH1601L MT-16S1A DV-16100 BC1601D1 SC1601D MTC-16101X WM-C1601Q AC161B
DV-16120 AC161J
16×2 WH1602L MT-16S2R DV-16210 BC1602E SC1602E MTC-16201X WM-C1602Q AC162E
SC1602N
WH1602D MT-16S2J DV-16230 BC1602B1 SC1602B MTC-16202X WM-C1602N AC162A
DV-16235 MTC-16203X
WH1602C MT-16S2D DV-16236 BC1602D SC1602D
WH1602A MT-16S2H DV-16244 BC1602H SC1602C MTC-16204X WM-C1602K
WH1602B DV-16252 BC1602A SC1602A MTC-16205B WM-C1602M
WH1602M DV-16257 BC1602F SC81602F
DV-16275
DV-16276
16×4 WH1604A MT-16S4A DV-16400 BC1604A1 SC1604A MTC-16400X WM-C1604M AC164A
WH1604B
20×1 DV-20100
MT-20S1L
20×2 WH2002A MT-20S2A DV-20200 BC2002A SC2002A MTC-20200X WM-C2002M AC202A
WH2002M
WH2002L MT-20S2M DV-20210 BC2002B SC2002C MTC-20201X WM-C2002P AC202B
DV-20211 AC202D
DV-20220
DV-20206-1
20×4 WH2004A MT-20S4A DV-20400 BC2004A SC2004A MTC-20400X WM-C2004P AC204A
SC2004G
SC2004C
WH2004L DV-20410 BC2004B MTC-20401X WM-C2004R AC204B
24×1 MT-24S1L
24×2 WH2402A MT-24S2A DV-24200 BC2402A SC2402A MTC-24200X WM-C2402P AC242A
MT-24S2L
40×2 WH4002A DV-40200 BC4002A SC4002A MTC-40200X WM-C4002P AC402A
40×4 WH4004A DV40400 BC4004A SC4004A MTC-40400X WM-C4004M AC404A
SC4004C

Питание, регулировка контрастности и подсветка

Внимательно нужно относится к полярности подключения питания к ЖК-индикатору, а также следить, чтобы напряжение питания лежало в диапазоне +4.5...5.5 В. Невнимательное отношение к этим моментам может привести к выходу индикатора из строя!

ЖК-индикаторы позволяют производить регулировку контрастности, используя делитель напряжения. Перед выводом данных на индикатор необходимо убедиться, что управляющее контрастностью напряжение находится в рабочем диапазоне. Номиналы резисторов отличаются у различных производителе ЖК-индикаторов. У некоторых моделей индикаторов на плате предусмотрены места для установки такого делителя и достаточно впаять туда нужные номиналы резисторов. Контрастность индикатора зависит от угла обзора. Если индикатор «на двенадцать часов», то смотреть на такой индикатор нужно таким образом, чтобы он находился ниже уровня глаз, если «ноль часов», то он предназначен для наблюдения на уровне глаз (перпендикулярно плоскости экрана). Если же индикатор «на шесть часов» то он должен использоваться при наблюдении выше уровня глаз. Этот момент обязательно нужно учесть при покупке.

Питание подсветки

Если в индикаторе имеется подсветка, то выводы для неё обычно располагаются отдельно. Необходимо подключить её к питанию, задав номинальный ток с помощью внешнего резистора R (см. datasheet ). Для моего индикатора номинальное напряжение на аноде должно составлять 3.5 В и ток 40 мА. Исходя из этого, номинал токоограничивающего резистора:

У некоторых производителей на плате индикатора предусмотрено место для установки такого резистора, нужно впаять соответствующий номинал, замкнуть перемычку и подсветка будет получать питание с той же линии, что и индикатор.

Как вы оцениваете эту публикацию?

  • Модуль FC-113 сделан на базе микросхемы PCF8574T, которая представляет собой 8-битный сдвиговый регистр - «расширитель» входов-выходов для последовательной шины I2C. На рисунке микросхема обозначена DD1.
  • R1 - подстроечный резистор для регулировки контрастности ЖК дисплея.
  • Джампер J1 используется для включения подсветки дисплея.
  • Выводы 1…16 служат для подключения модуля к выводам LCD дисплея.
  • Контактные площадки А1…А3 нужны для изменения адреса I2C устройства. Запаивая соответствующие перемычки, можно менять адрес устройства. В таблице приведено соответствие адресов и перемычек: "0" соответствует разрыву цепи, "1" - установленной перемычке. По умолчанию все 3 перемычки разомкнуты и адрес устройства 0x27 .

2 Схема подключения ЖК дисплея к Arduino по протоколу I2C

Подключение модуля к Arduino осуществляется стандартно для шины I2C: вывод SDA модуля подключается к аналоговому порту A4, вывод SCL - к аналоговому порту A5 Ардуино. Питание модуля осуществляется напряжением +5 В от Arduino. Сам модуль соединяется выводами 1…16 с соответствующими выводами 1…16 на ЖК дисплее.


3 Библиотека для работы по протоколу I2C

Теперь нужна библиотека для работы с LCD по интерфейсу I2C. Можно воспользоваться, например, вот этой (ссылка в строке "Download Sample code and library").

Скачанный архив LiquidCrystal_I2Cv1-1.rar разархивируем в папку \libraries\ , которая находится в директории Arduino IDE.

Библиотека поддерживает набор стандартных функций для LCD экранов:

Функция Назначение
LiquidCrystal() создаёт переменную типа LiquidCrystal и принимает параметры подключения дисплея (номера выводов);
begin() инициализация LCD дисплея, задание параметров (кол-во строк и символов);
clear() очистка экрана и возврат курсора в начальную позицию;
home() возврат курсора в начальную позицию;
setCursor() установка курсора на заданную позицию;
write() выводит символ на ЖК экран;
print() выводит текст на ЖК экран;
cursor() показывает курсор, т.е. подчёркивание под местом следующего символа;
noCursor() прячет курсор;
blink() мигание курсора;
noBlink() отмена мигания;
noDisplay() выключение дисплея с сохранением всей отображаемой информации;
display() включение дисплея с сохранением всей отображаемой информации;
scrollDisplayLeft() прокрутка содержимого дисплея на 1 позицию влево;
scrollDisplayRight() прокрутка содержимого дисплея на 1 позицию вправо;
autoscroll() включение автопрокрутки;
noAutoscroll() выключение автопрокрутки;
leftToRight() задаёт направление текста слева направо;
rightToLeft() направление текста справа налево;
createChar() создаёт пользовательский символ для LCD-экрана.

4 Скетч для вывода текста на LCD экран по шине I2C

Откроем образец: Файл Образцы LiquidCrystal_I2C CustomChars и немного его переделаем. Выведем сообщение, в конце которого будет находиться мигающий символ. В комментариях к коду прокомментированы все нюансы скетча.

#include // подключаем библиотеку Wire #include // подключаем библиотеку ЖКИ #define printByte(args) write(args); // uint8_t heart = {0x0,0xa,0x1f,0x1f,0xe,0x4,0x0}; // битовая маска символа «сердце» LiquidCrystal_I2C lcd(0x27, 16, 2); // Задаём адрес 0x27 для LCD дисплея 16x2 void setup() { lcd.init(); // инициализация ЖК дисплея lcd.backlight(); // включение подсветки дисплея lcd.createChar(3, heart); // создаём символ «сердце» в 3 ячейке памяти lcd.home(); // ставим курсор в левый верхний угол, в позицию (0,0) lcd.!"); // печатаем строку текста lcd.setCursor(0, 1); // перевод курсора на строку 2, символ 1 lcd.print(" i "); // печатаем сообщение на строке 2 lcd.printByte(3); // печатаем символ «сердце», находящийся в 3-ей ячейке lcd.print(" Arduino "); } void loop() { // мигание последнего символа lcd.setCursor(13, 1); // перевод курсора на строку 2, символ 1 lcd.print("\t"); delay(500); lcd.setCursor(13, 1); // перевод курсора на строку 2, символ 1 lcd.print(" "); delay(500); }

Кстати, символы, записанные командой lcd.createChar(); , остаются в памяти дисплея даже после выключения питания, т.к. записываются в ПЗУ дисплея 1602.

5 Создание собственных символов для ЖК дисплея

Немного подробнее рассмотрим вопрос создания собственных символов для ЖК экранов. Каждый символ на экране состоит из 35-ти точек: 5 в ширину и 7 в высоту (+1 резервная строка для подчёркивания). В строке 6 приведённого скетча мы задаём массив из 7-ми чисел: {0x0, 0xa, 0x1f, 0x1f, 0xe, 0x4, 0x0} . Преобразуем 16-ричные числа в бинарные: {00000, 01010, 11111, 11111, 01110, 00100, 00000} . Эти числа - не что иное, как битовые маски для каждой из 7-ми строк символа, где "0" обозначают светлую точку, а "1" - тёмную. Например, символ сердца, заданный в виде битовой маски, будет выглядеть на экране так, как показано на рисунке.

6 Управление ЖК экраном по шине I2C

Загрузим скетч в Arduino. На экране появится заданная нами надпись с мигающим курсором в конце.


7 Что находится «за» шиной I2C

В качестве бонуса рассмотрим временную диаграмму вывода латинских символов "A", "B" и "С" на ЖК дисплей. Эти символы имеются в ПЗУ дисплея и выводятся на экран просто передачей дисплею их адреса. Диаграмма снята с выводов RS, RW, E, D4, D5, D6 и D7 дисплея, т.е. уже после преобразователя FC-113 «I2C параллельная шина». Можно сказать, что мы погружаемся немного «глубже» в «железо».


Временная диаграмма вывода латинских символов "A", "B" и "С" на LCD дисплей 1602

На диаграмме видно, что символы, которые имеются в ПЗУ дисплея (см. стр.11 даташита, ссылка ниже), передаются двумя полубайтами, первый из которых определяет номер столбца таблицы, а второй - номер строки. При этом данные «защёлкиваются» по фронту сигнала на линии E (Enable), а линия RS (Register select, выбор регистра) находится в состоянии логической единицы, что означает передачу данных. Низкое состояние линии RS означает передачу инструкций, что мы и видим перед передачей каждого символа. В данном случае передаётся код инструкции возврата каретки на позицию (0, 0) ЖК дисплея, о чём также можно узнать, изучив техническое описание дисплея.

И ещё один пример. На этой временной диаграмме показан вывод символа «Сердце» на ЖК дисплей.


Опять, первые два импульса Enable соответствуют инструкции Home() (0000 0010 2) - возврат каретки на позицию (0; 0), а вторые два - вывод на ЖК дисплей хранящийся в ячейке памяти 3 10 (0000 0011 2) символ «Сердце» (инструкция lcd.createChar(3, heart); скетча).

Для работы с символьными графическими дисплеями предлагаем воспользоваться библиотекой LiquidCrystal которая входит в стандартный набор Arduino IDE и предназначена для работы по 8-битному (4-битному) параллельному интерфейсу. Если Ваш дисплей подключается к Arduino по шине I2, то Вам нужно установить библиотеку LiquidCrystal_I2C (большинство функций которой повторяют функции первой библиотеки).

Поддерживаемые дисплеи:

Дисплей Подключение и инициализация
LCD1602 - символьный дисплей (16x02 символов),


#include
[ , 8 , 9 , 10 , 11 ]);
void setup(){ lcd.begin(16 , 2); }

// Пояснение:

void setup(){ ОБЪЕКТ.begin(КОЛ_СТОЛБЦОВ, КОЛ_СТРОК); }


LiquidCrystal ОБЪЕКТ (RS , E , D0 , D1 , D2 , D3 , D4 , D5 , D6 , D7);


с интерфейсом I2C (синий)

#include
#include
LiquidCrystal_I2C lcd(0x27 или 0x3F , 16 , 2);
void setup(){ lcd.init(); }

// Пояснение:



LCD1602 I2C - символьный дисплей (16x02 символов),
с интерфейсом I2C (зелёный)

#include
#include
LiquidCrystal_I2C lcd(0x27 или 0x3F , 16 , 2);
void setup(){ lcd.init(); }

// Пояснение:
LiquidCrystal_I2C ОБЪЕКТ (АДРЕС_I2C , КОЛ_СТОЛБЦОВ, КОЛ_СТРОК);
// АДРЕС_I2C может быть либо 0x27, либо 0x3F

LCD2004 - символьный дисплей (20x04 символов),
с параллельным интерфейсом (синий)

#include
LiquidCrystal lcd(2 , 3 , 4 , 5 , 6 , 7 [ , 8 , 9 , 10 , 11 ]);
void setup(){ lcd.begin(20 , 4); }

// Пояснение:
LiquidCrystal ОБЪЕКТ (RS , E , D4 , D5 , D6 , D7);
void setup(){ ОБЪЕКТ.begin(КОЛ_СТОЛБЦОВ, КОЛ_СТРОК); }

// Если используется 8 проводов шины данных, то указываем их все
LiquidCrystal ОБЪЕКТ (RS , E , D0 , D1 , D2 , D3 , D4 , D5 , D6 , D7);

LCD2004 I2C - символьный дисплей (20x04 символов),
с интерфейсом I2C (синий)
#include
#include
LiquidCrystal_I2C lcd(0x27 или 0x3F , 20 , 4);
void setup(){ lcd.init(); }

// Пояснение:
LiquidCrystal_I2C ОБЪЕКТ (АДРЕС_I2C , КОЛ_СТОЛБЦОВ, КОЛ_СТРОК);
// АДРЕС_I2C может быть либо 0x27, либо 0x3F

#1 Пример

Выводим надпись на дисплей LCD1602 подключённый по шине I2C. Для работы с дисплеем LCD2004 нужно изменить 3 строку на LiquidCrystal_I2C lcd(0x27,20,4);

#include // Подключаем библиотеку для работы с LCD дисплеем по шине I2C LiquidCrystal_I2C lcd(0x27,16,2); // Объявляем объект библиотеки, указывая параметры дисплея (адрес I2C = 0x27, количество столбцов = 16, количество строк = 2) // Если надпись не появилась, замените адрес 0x27 на 0x3F void setup(){ // lcd.init(); // Инициируем работу с LCD дисплеем lcd.backlight(); // Включаем подсветку LCD дисплея lcd.setCursor(0, 0); // Устанавливаем курсор в позицию (0 столбец, 0 строка) lcd.print("LCD"); // Выводим текст "LCD", начиная с установленной позиции курсора lcd.setCursor(0, 1); // Устанавливаем курсор в позицию (0 столбец, 1 строка) lcd.print("www.iarduino.ru"); // Выводим текст "www.iarduino.ru", начиная с установленной позиции курсора } // // void loop(){} // Код внутри функции loop выполняется постоянно. Но так как мы выводим статичный текст, нам достаточно его вывести 1 раз при старте, без использования кода loop

#2 Пример

Выводим надпись на дисплей LCD1602 подключённый по 4-битной параллельной шине. Для работы с дисплеем LCD2004 нужно изменить 5 строку на lcd.begin(20, 4);

#include // Подключаем библиотеку LiquidCrystal для работы с LCD дисплеем LiquidCrystal lcd(2,3,4,5,6,7); // Объявляем объект библиотеки, указывая выводы дисплея (RS,E,D4,D5,D6,D7) // Если используется 8 проводов шины данных, то указываем (RS,E,D0,D1,D2,D3,D4,D5,D6,D7) void setup(){ // lcd.begin(16, 2); // Инициируем работу с LCD дисплеем, указывая количество (столбцов, строк) lcd.setCursor(0, 0); // Устанавливаем курсор в позицию (0 столбец, 0 строка) lcd.print("LCD2004"); // Выводим текст "LDC1602", начиная с установленной позиции курсора lcd.setCursor(0, 1); // Устанавливаем курсор в позицию (0 столбец, 1 строка) lcd.print("www.iarduino.ru"); // Выводим текст "www.iarduino.ru", начиная с установленной позиции курсора } // // void loop(){} // Код внутри функции loop выполняется постоянно. Но так как мы выводим статичный текст, нам достаточно его вывести 1 раз при старте, без использования кода loop

#3 Пример

Выводим надпись «Русский язык» на дисплей LCD1602 подключённый по шине I2C:

#include // Подключаем библиотеку для работы с шиной I2C #include // Подключаем библиотеку для работы с LCD дисплеем по шине I2C LiquidCrystal_I2C lcd(0x27,16,2); // Объявляем объект библиотеки, указывая параметры дисплея (адрес I2C = 0x27, количество столбцов = 16, количество строк = 2) // uint8_t symbol = { // Объявляем массив из 6 собственных символов (к и й я з ы), каждый символ состоит из 8 байт { 0, 0,18,20,24,20,18, 0 }, // к { 0, 0,17,19,21,25,17, 0 }, // и {10, 4,17,19,21,25,17, 0 }, // й { 0, 0,15,17,15, 5, 9, 0 }, // я { 0, 0,14,17, 6,17,14, 0 }, // з { 0, 0,17,17,29,19,29, 0 }}; // ы // void setup(){ // lcd.init(); // Инициируем работу с LCD дисплеем lcd.backlight(); // Включаем подсветку LCD дисплея lcd.createChar(1, symbol); // Загружаем 1 символ "к" в ОЗУ дисплея lcd.createChar(2, symbol); // Загружаем 2 символ "и" в ОЗУ дисплея lcd.createChar(3, symbol); // Загружаем 3 символ "й" в ОЗУ дисплея lcd.createChar(4, symbol); // Загружаем 4 символ "я" в ОЗУ дисплея lcd.createChar(5, symbol); // Загружаем 5 символ "з" в ОЗУ дисплея lcd.createChar(6, symbol); // Загружаем 6 символ "ы" в ОЗУ дисплея lcd.setCursor(0, 0); // Устанавливаем курсор в позицию (0 столбец, 0 строка) lcd.print("Pycc\1\2\3 \4\5\6\1"); // Выводим текст "Pycckий языk", где "Pycc" написано латиницей, а "kий языk" - символами из ОЗУ дисплея } // Если нужно вывести символ из ОЗУ дисплея, то пишем \ и номер символа // void loop(){} // Код внутри функции loop выполняется постоянно. Но так как мы выводим статичный текст, нам достаточно его вывести 1 раз при старте, без использования кода loop

Функции, общие для библиотек LiquidCrystal и LiquidCrystal_I2C:

  • begin(cols,rows,); – Инициализация дисплея с указанием количества столбцов, строк и размера символа.
  • clear(); – Очистка дисплея с установкой курсора в положение 0,0 (Занимает много времени!).
  • home(); – Установка курсора в положение 0,0 (Занимает много времени!).
  • display(); – Быстрое включение дисплея (без изменения данных в ОЗУ).
  • noDisplay(); – Быстрое выключение дисплея (без изменения данных в ОЗУ).
  • blink(); – Включение мигающего курсора (с частотой около 1 Гц).
  • noBlink(); – Выключение мигающего курсора.
  • cursor(); – Включение подчеркивания курсора.
  • noCursor(); – Выключение подчеркивания курсора.
  • scrollDisplayLeft(); – Прокрутка дисплея влево. Сдвиг координат дисплея на один столбец влево (без изменения ОЗУ).
  • scrollDisplayRight(); – Прокрутка дисплея вправо. Сдвиг координат дисплея на один столбец вправо (без изменения ОЗУ).
  • leftToRight(); – Указывает в дальнейшем сдвигать положение курсора, после вывода очередного символа, на один столбец вправо.
  • rightToLeft(); – Указывает в дальнейшем сдвигать положение курсора, после вывода очередного символа, на один столбец влево.
  • noAutoscroll(); – Указывает в дальнейшем выравнивать текст по левому краю от позиции курсора (как обычно).
  • autoscroll(); – Указывает в дальнейшем выравнивать текст по правому краю от позиции курсора.
  • createChar(num,array); – Запись пользовательского символа в CGRAM дисплея под указанным номером.
  • setCursor(col,row); – Установка курсора в позицию указанную номером колонки и строки.
  • print(text); – Вывод текста, символов или цифр на экран дисплея. Синтаксис схож с одноимённой функцией класса Serial.

Функции, реализованные только в библиотеке LiquidCrystal_I2C:

  • init(); – Инициализация дисплея. Должна быть первой командой библиотеки LiquidCrystal_I2C после создания объекта. На самом деле данная функция есть и в библиотеке LiquidCrystal, но в той библиотеке она вызывается автоматически (по умолчанию) при создании объекта.
  • backlight(); – Включение подсветки дисплея.
  • noBacklight(); – Выключение подсветки дисплея.
  • setBacklight(flag); – Управление подсветкой (true - включить / false - выключить), используется вместо функций noBacklight и backlight.

Подключение:

// Для шины I2C:
#include
#include
LiquidCrystal_I2C lcd(address , col , row );
void setup(){
lcd.init();
}

Параметр:
  • address: Адрес дисплея на шине I2C - 0x27 или 0x3F
  • col:
  • row:
// Для параллельной шины из 4 проводов:
#include
LiquidCrystal lcd( RS , E , D4 , D5 , D6 , D7 );
void setup(){
lcd.begin( col , row );
}
Параметр:
  • RS: № вывода Arduino к которому подключён вывод RS
  • E: № вывода Arduino к которому подключён вывод E
  • D0...D3: № выводов Arduino к которым подключены выводы D0-D3
  • D4...D7: № выводов Arduino к которым подключены выводы D4-D7
  • col: количество столбцов реализованное у дисплея
  • row: количество строк реализованное у дисплея
// Для параллельной шины из 8 проводов:
#include
LiquidCrystal lcd( RS , E , D0 , D1 , D2 , D3 , D4 , D5 , D6 , D7 );
void setup(){
lcd.begin( col , row );
}
begin(col , row , );
Инициализация дисплея с указанием размеров экрана и символов.
Параметр:
  • col: количество столбцов реализованное у дисплея
  • row: количество строк реализованное у дисплея
  • size: размер символов, указывается константой:
    LCD_5x8DOTS (по умолчанию), или LCD_5x10DOTS
/* Для шины I2C: */ #include // Подключаем библиотеку для работы с шиной I2C #include // Подключаем библиотеку для работы с LCD дисплеем по шине I2C LiquidCrystal_I2C lcd(0x3F,20,4); // Объявляем объект библиотеки, указывая параметры дисплея (адрес I2C = 0x3F, количество столбцов = 20, количество строк = 4) // void setup(){ // lcd.init(); // Инициируем работу с LCD дисплеем lcd.backlight(); // Включаем подсветку LCD дисплея... // Выводим информацию, которая должна отображаться при старте } // // void loop(){} // ... // Выводим информацию которая должна меняться по алгоритму Вашего кода } // /* Для 4 проводной параллельной шины: */ #include // Подключаем библиотеку LiquidCrystal для работы с LCD дисплеем LiquidCrystal lcd(2,3,4,5,6,7); // Объявляем объект библиотеки, указывая выводы дисплея (RS,E,D4,D5,D6,D7) // Если используется 8 проводов шины данных, то указываем (RS,E,D0,D1,D2,D3,D4,D5,D6,D7) void setup(){ // lcd.begin(16, 2); // Инициируем работу с LCD дисплеем, указывая количество (столбцов, строк) ... // Выводим информацию, которая должна отображаться при старте } // // void loop(){} // ... // Выводим информацию которая должна меняться по алгоритму Вашего кода } //

Функции управления дисплеем:

display();
Включает дисплей после того как он был выключен функцией noDisplay.
Примечание: Функция выполняется быстро и без изменений в ОЗУ дисплея.
noDisplay();
Выключает дисплей.
Данные на дисплее не будут отображаться до вызова функции display, но и не сотрутся из памяти ОЗУ, а после вызова функции display, опять будут отображаться.
Примечание: Функция выполняется быстро и без изменений в ОЗУ дисплея.
scrollDisplayLeft();
Сдвигает координаты дисплея на один столбец влево.



scrollDisplayRight();
Сдвигает координаты дисплея на один столбец вправо.
Постоянный вызов данной функции создаст эффект бегущей строки.
Координаты сдвигаются как для имеющейся на дисплее информации, так и для той, которая будет выведена после.
Примечание: Функция выполняется без изменений ОЗУ дисплея.
Если вызвать функцию 40 раз подряд, то координата вернётся в изначальную точку
clear();
Очистка дисплея с установкой курсора в положение 0,0.
Информация имеющаяся на дисплее безвозвратно сотрётся.
Примечание: Занимает много времени.
backlight();
Включение подсветки дисплея.
noBacklight();
Выключение подсветки дисплея.
Примечание: Функция реализована только в библиотеке LiquidCrystal_I2C.
setBacklight(flag );
Управление подсветкой (вместо функций noBacklight и backlight).
Параметр:
  • flag: значение true - включает, а false - выключает подсветку.
Примечание: Функция реализована только в библиотеке LiquidCrystal_I2C.
/* Выводим надпись для наблюдения за функциями управления дисплеем: */ lcd.cursor(0,0); // Устанавливаем курсор в крайний верхний угол дисплея (0 столбец, 0 строка) lcd.print("iarduino.ru"); // Выводим текст "iarduino.ru" (первая буква "i" будет находиться в позиции "0,0", а последняя "u" в позиции "10,0", невидимый курсор в позиции "11,0") // lcd.noDisplay(); // Выключаем дисплей (надпись исчезнет с дисплея) lcd.display(); // Включаем дисплей (надпись появится на дисплее в том же месте) lcd.scrollDisplayLeft(); // Сдвигаем координаты столбцов влево (на дисплее будет отображаться "arduino.ru" без первой буквы "i", которая выйдет за пределы дисплея, но останется в его ОЗУ) lcd.scrollDisplayRight(); // Сдвигаем координаты столбцов вправо (на дисплее будет отображаться "iarduino.ru" на том же месте, где и была выведена изначально) lcd.clear(); // Чистим дисплей (надпись безвозвратно исчезнет с дисплея) lcd.noBacklight(); // Отключаем подсветку дисплея lcd.backlight(); // Включаем подсветку дисплея lcd.setBacklight(0); // Отключаем подсветку дисплея lcd.setBacklight(1); // Включаем подсветку дисплея

Функции управления курсором:

setCursor(col , row );
Установка курсора в указанную позицию.
Параметр:
  • col: номер столбца (начиная с 0).
  • row: номер строки (начиная с 0)
home();
Установка курсора в позицию 0,0. Работает как функция setCursor(0,0);
Примечание: Занимает много времени.
blink();
Включение мигающего курсора.
Примечание: Курсор занимает всё поле символа и мигает с частотой около 1 Гц, в той позиции где он был установлен ранее.
noBlink();
Выключение мигающего курсора.
Примечание: Курсор становится невидим, но его позиция сохраняется.
cursor();
Включение подчеркивания курсора.
Примечание: Курсор принимает вид символа подчёркивания и находится в той позиции, где он был установлен ранее.
noCursor();
Выключение подчеркивания курсора.
Примечание: Курсор становится невидим, но его позиция сохраняется.
lcd.setCursor(0, 1); // Устанавливаем курсор на первый символ второй строки (нумерация строк и столбцов начинается с 0) lcd.home(); // Устанавливаем курсор на первый символ первой строки (как при вызове lcd.setCursor(0,0);) lcd.blink(); // Делаем курсор видимым (на месте курсора будет мигать прямоугольник) lcd.noBlink(); // Делаем курсор невидимым (убираем мигающий прямоугольник) lcd.cursor(); // Делаем курсор видимым (на месте курсора появится знак подчёркивания) lcd.noCursor(); // Делаем курсор невидимым (убираем знак подчёркивания) // Если курсор попадает на место где есть символ, то этот символ не исчезает

Функции указывающие направление и выравнивание:

leftToRight();
Указывает, что после каждого нового символа, положение курсора должно сдвигаться на один столбец вправо.
Примечание: Если вывести текст "abc" на дисплее отобразится "abc" и текст будет находиться правее от изначального положения курсора.
(Как обычно)
rightToLeft();
Указывает, что после каждого нового символа, положение курсора должно сдвигаться на один столбец влево.
Примечание: Если вывести текст "abc" на дисплее отобразится "cba" и текст будет находиться левее от изначального положения курсора.
(Письменность справа налево)
noAutoscroll();
Указывает, что в дальнейшем, текст нужно выравнивать по левому краю от изначальной позиции курсора.
Примечание: если установить курсор в позицию 10,0 и вывести текст, то в данной позиции будет находиться первый символ выведенного текста.
(Как обычно)
autoscroll();
Указывает, что в дальнейшем, текст нужно выравнивать по правому краю от изначальной позиции курсора.
Примечание: если установить курсор в позицию 10,0 и вывести текст, то в данной позиции будет находиться курсор.
(Координаты дисплея будут сдвинуты влево, как будто Вы вызвали функцию scrollDisplayLeft столько раз, сколько букв в выведенном тексте)
lcd.leftToRight(); // Указываем курсору сдвигаться вправо (Как обычно в европейской письменности) lcd.clear(); lcd.setCursor(5,0); lcd.print("ABC"); // На дисплее увидим: " ABC " (После "A" курсор сдвинулся вправо и вывелась "B", далее курсор сдвинулся вправо и вывелась "C") lcd.rightToLeft(); // Указываем курсору сдвигаться влево (Как в письменности справа налево) lcd.clear(); lcd.setCursor(5,0); lcd.print("ABC"); // На дисплее увидим: " CBA " (После "A" курсор сдвинулся влево и вывелась "B", далее курсор сдвинулся влево и вывелась "C") lcd.noAutoscroll(); // Устанавливаем выравнивание по левому краю (Как обычно) lcd.clear(); lcd.setCursor(5,0); lcd.print("ABC"); // На дисплее увидим: " ABC " (Как обычно) lcd.autoscroll(); // Устанавливаем выравнивание по правому краю (Координаты дисплея будут сдвинуты влево на количество выведенных символов) lcd.clear(); lcd.setCursor(5,0); lcd.print("ABC"); // На дисплее увидим: " ABC " (Координаты дисплея будут сдвинуты на 3 символа влево, так как после каждого символа совершается вызов функции scrollDisplayLeft)

Функции ввода текста и символов:

createChar(num,array);
Запись пользовательского символа в CGRAM дисплея под указанным номером.
Если Вы хотите вывести текст (функцией print) в котором должен находиться установленный Вами символ, укажите слэш и номер под которым был записан этот символ: print("C\1MBO\2").
Параметр:
  • num: номер под которым будет записан символ.
  • array: массив представляющий записываемый символ.
Примечание: Массив состоит из нескольких байт, количество которых равно количеству строк в символе. Каждый установленный бит байта соответствует установленному (отображаемому) пикселю символа.
print(text);
Вывод текста, символов или цифр на экран дисплея.
Параметр:
  • text: символ, число или строка для вывода на дисплей.
Примечание: Синтаксис схож с одноимённой функцией класса Serial.
#include // Подключаем библиотеку для работы с шиной I2C #include // Подключаем библиотеку для работы с LCD дисплеем по шине I2C LiquidCrystal_I2C lcd(0x27,16,2); // Объявляем объект библиотеки, указывая параметры дисплея (адрес I2C = 0x27, количество столбцов = 16, количество строк = 2) // uint8_t symbol_d = {0b00000, // 1 строка символа "д" 0b00000, // 2 строка символа "д" 0b00110, // 3 строка символа "д" 0b01010, // 4 строка символа "д" 0b01010, // 5 строка символа "д" 0b01010, // 6 строка символа "д" 0b11111, // 7 строка символа "д" 0b10001}; // 8 строка символа "д" Весь массив можно записать одной строкой: uint8_t symbol_d={0,0,6,10,10,10,31,17}; // uint8_t symbol_i = {0b00000, // 1 строка символа "и" 0b00000, // 2 строка символа "и" 0b10001, // 3 строка символа "и" 0b10011, // 4 строка символа "и" 0b10101, // 5 строка символа "и" 0b11001, // 6 строка символа "и" 0b10001, // 7 строка символа "и" 0b00000}; // 8 строка символа "и" Весь массив можно записать одной строкой: uint8_t symbol_i={0,0,17,19,21,25,17,0}; void setup(){ // lcd.init(); // Инициируем работу с LCD дисплеем lcd.backlight(); // Включаем подсветку LCD дисплея lcd.createChar(1,symbol_d); // Загружаем в память дисплея первый символ lcd.createChar(2,symbol_i); // Загружаем в память дисплея второй символ lcd.clear(); // Чистим экран lcd.setCursor(0,0); // Устанавливаем курсор в крайний верхний угол lcd.print("Pa\1\2o"); // Выводим текст "Paдиo" при этом символы "P", "a" , "o" пишем латиницей, } // а символы "д", "и" выводим из памяти дисплея, указывая их номера // void loop(){ // lcd.setCursor(0,1); lcd.print(" "); // стираем всю нижнюю строку lcd.setCursor(0,1); lcd.print("i"); lcd.print("arduino"); lcd.print(".ru"); // выводим текст "i" "arduino" ".ru" в нижней строке delay(2000); // ждём 2 секунды lcd.setCursor(0,1); lcd.print(" "); // стираем всю нижнюю строку lcd.setCursor(0,1); lcd.print(12.345); // выводим число 12.34 (выводится 2 знака после запятой) delay(2000); // ждём 2 секунды lcd.setCursor(0,1); lcd.print(" "); // стираем всю нижнюю строку lcd.setCursor(0,1); lcd.print(12, HEX); // выводим число 12 в виде шестнадцатиричного числа delay(2000); // ждём 2 секунды lcd.setCursor(0,1); lcd.print(" "); // стираем всю нижнюю строку lcd.setCursor(0,1); lcd.print(1); // выводим число 1 delay(2000); // ждём 2 секунды }

В этой статье я расскажу как с помощью достаточно распространенной библиотеки управлять LCD дисплеем на базе контроллера HD44780 и выводить на него информацию. Библиотека состоит из двух файлов lcd_lib.h и lcd_lib.c для использования с дисплеем подключенным по четырехбитной шине данных. В заголовочном файле прописываются настройки подключения дисплея к контроллеру, которые можно изменить по своему усмотрению, а также переменные и функции.

Ниже представлены базовые функции управления и вывода информации на LCD.

lcd_com – посылка команды в LCD

Пример:
lcd_com(0x01); // очистка дисплея
lcd_com(0x38); // интерфейс 8 бит 2 строки

lcd_dat – вывод одного символа в текущую позицию

Пример:
lcd_dat("U"); // вывод символа "U"
lcd_dat(0xB0); // вывод символа "Ю"(В соответствие с таблицей символов дисплея)

lcd_init – Инициализация LCD

Вот пример широко распространенной последовательности для инициализации LCD: 0x38, 0xOC, 0x06 .
0x38 устанавливает режим отображения 2-х строк с матрицей 5 х 8 точек и работу с 8-ми разрядной шиной данных;
0xOC включает отображение на экране ЖКИ-можуля, без отображения курсоров;
0x06 устанавливает режим автоматического перемещения курсора слева-направо после вывода каждого символа.

lcd_clr – очистка LCD

lcd_home – переводит курсор в начало

lcd_string – вывод строки указанной длинны в текущую позицию

Пример: lcd_string("TEST",4); // вывод строки TEST длиной 4 символа

lcd_gotoxy – перемещает курсор в указанную позицию

Пример: lcd_gotoxy(12, 1); // курсор в позиции тринадцатый разряд второй строки

copy_string_to_lcd – вывод строки из флеш-памяти в указанную позицию дисплея

Пример: copy_string_to_lcd("TEST",4,0); // вывод строки TEST в позицию пятый разряд первой строки

lcd_definechar – записывает пользовательское изображение символа в память дисплея

Чтобы вывести на экран дисплея собственный символ необходимо знать код символа, прописать этот код в памяти программ микроконтроллера (PROGMEM), затем поместить его в свободную ячейку памяти LCD (CGRAM) и выводить его на экран при помощи функции lcd_dat() .

Для программирования доступны 8 переопределяемых символов в режиме с матрицей 5х7 точек и 4 с матрицей 5х10 (в режиме 5х10 переопределяемые символы адресуются кодами DDRAM через один: 0x00, 0x02, 0x04, 0x06). Для кодирования матрицы используются горизонтально "уложенные" байты, пять младших битов которых несут информацию о рисунке (причем 1(единица) означает, что сегмент будет включен), 4-й разряд каждого из 8-ми (или 11-ти в режиме 5 х 10) байтов матрицы определяет левую колонку символа, а 0-й - правую. Старшие три бита не используются, равно как и старшие пять байтов, составляющих полную область матрицы символа (16 байтов) в режиме 5х10 (обратите внимание, что матрица программируемых символов допускает использование полной высоты строки (8 строчек для режима 5х7 и 11 строчек для режима 5х10), то есть можно размещать точки в области подчеркивающего курсора).

Создавать символ более удобно в двоичном формате, к примеру создадим символ прямоугольника, код будет таким:

Const uint8_t pryamougolnik PROGMEM= { 0b11111, 0b10001, 0b10001, 0b10001, 0b10001, 0b10001, 0b11111, 0b0 };

lcd_shift_right – перемещает изображение на указанное число символов вправо

lcd_shift_Left – перемещает изображение на указанное число символов влево

lcd_cursor_on – включает курсор подчеркивание

lcd_cursor_blink – включает мигающий курсор

lcd_cursor_off – выключает курсор

lcd_blank – отключает изображение, но не очищает

lcd_visible – включает изображение

lcd_cursor_left – перемещает курсор на указанное число символов влево

lcd_cursor_right – перемещает курсор на указанное число символов вправо

lcd_progress_bar - позволяет выводить на дисплей динамическую шкалу, об этой функции поговорим более подробней на практическом примере.

lcd_num_to_str - позволяет выводить на дисплей переменную до 4 разрядов

Пример: void lcd_num_to_str(ADC, 4); // Выводим переменную АЦП 4 разряда

Сделаем проект "Аналоговый вольтметр" в котором информация об измеренном напряжении будет выводится на экран в виде горизонтальной динамической шкалы. Измеряемое напряжение подается на вход ADC0, максимум 5В. без использования делителя. Используем для этого проекта микроконтроллер atmega8, который тактируется от внутреннего генератора частотой 8МГц. Дисплей подключаем по четырехбитной шине в соответствие с настройками из файла lcd_lib.h. При создании проекта в AVRSTUDIO копируем 2 файла библиотеки в папку нашего проекта, а в дереве проекта добавляем эти файлы(lcd_lib.c и lcd_lib.h).

За вывод динамической шкалы отвечает функция lcd_progress_bar(uint8_t progress, uint8_t maxprogress, uint8_t length) , в зависимости от состояния переменных этой функции, шкала меняет свой уровень, progress - уровень от 0 до 255, maxprogress - максимальный уровень ограничивается числом от 0 до 255, length - длина шкалы от 0 до 16 ячеек(в зависимости от типа дисплея). Так как при максимальном напряжении на входе значение ADC равно 1024, делим это значение на 4 и присваиваем его переменной "u", а переменную "u" используем в функции вывода динамической шкалы progress() .

Полный текст программы выкладываю ниже:

//******Применение библиотек для работы с LCD HD44780***** #include #include #include #include "lcd_lib.h" const uint8_t simbol_1 PROGMEM= {
0b00000,0b10001,0b01010,0b00100,0b01010,0b10001,0b00000,0b00000
};
const uint8_t simbol_2 PROGMEM= {
0b00100,0b00100,0b00100,0b11111,0b00100,0b00100,0b00100,0b00000
}; unsigned char u; //******************************************************** void progress(void) // функция вывода шкалы { lcd_gotoxy(0, 0); lcd_string("0......05......1",16); lcd_gotoxy(0, 1); lcd_progress_bar(u, 255, 16); } //******************************************************** int main(void) { /***Настройка АЦП***/ ADCSRA |= (1 << ADEN) //Включение АЦП |(1 << ADPS1)|(1 << ADPS0); // предделитель преобразователя на 8 ADMUX |= (0 << REFS1)|(0 << REFS0) // внешний ИОН |(0 << MUX0)|(0 << MUX1)|(0 << MUX2)|(0 << MUX3); // вход PC0 _delay_ms(100); lcd_init();// инициализация LCD lcd_clr();// очистить LCD _delay_ms(10); lcd_definechar(simbol_1, 6); // определяем собств. символ 1 lcd_definechar(simbol_2, 7); // определяем собств. символ 2 for(char a=0; a<10; a++) // цикл приветствия { lcd_gotoxy(0, 0); lcd_dat(6); _delay_ms(100); lcd_gotoxy(0, 0); lcd_dat(7); _delay_ms(100); lcd_gotoxy(3, 0); lcd_string("AЅa»oґoіГ№",10); // Аналоговый lcd_gotoxy(3, 1); lcd_string("іo»Дїјeїp",9); // вольтметр } _delay_ms(1000); lcd_clr();// очистить LCD while(1) { progress(); ADCSRA |= (1 << ADSC); //Начинаем преобразование while ((ADCSRA&(1 << ADIF))== 0); //Ждем флага окончания преобразования u = ADC/4; } }

Рассмотрим взаимодействие пользователя и устройства на базе микроконтроллера. Очень часто пользователю нужно чем-то вводить информацию, и с чего-то ее считывать. Для этих целей очень хорошо подходит клавиатура и дисплей ().Рассмотрим взаимодействие пользователя и устройства на базе микроконтроллера. Очень часто пользователю нужно чем-то вводить информацию, и с чего-то ее считывать. Для этих целей очень хорошо подходит клавиатура и дисплей (). В этой заметке рассмотрим поподробнее отображение информации на символьном ЖКИ со знакосинтезирующим .

Такие индикаторы часто используются при проектировании цифровых устройств, поэтому с ним необходимо уметь работать.
Рассмотрим типовое внутреннее строение знакосинтезирующего ЖКИ :

Внутренняя структура HD44780

В основе ЖКИ лежит матрица из жидких кристаллов, подавая напряжение на элемент которой мы можем «зажечь» точку на экране. В нашем случае матрица состоит из знакомест (чаще всего 8х5 пикселей), сгруппированых в несколько рядков. Этим всем управляет встроенный контроллер HD44780 . У контроллера есть однобайтные ячейки памяти (DDRAM ), содержимое которых собственно отображается на экране согласно таблице записанной в CGRAM . Ячеек памяти обычно больше чем знакомест в ЖКИ , поэтому адресацию знакомест нужно смотреть в даташите. То есть нам необходимо только в нужную позицию записать код нужного знака, а все остальное HD44780 сделает сам.

Для выбора позиции существует виртуальный курсор (номер текущей ячейки памяти, АС), которым можно управлять посредством команд, курсор можно сделать видимым. По умолчанию при записи символа в ячейку, курсор сдвигаеться вперед на одну позицию. Коды символов для ЖКИ поддерживающего кириллицу можно увидеть в таблице:

Старшая тетрада кода будет равна ряду выбранного символа, а младшая – строке. Можно создать свою таблицу символов, записав ее в CGRAM . На каждый символ требуется 5 байт, где единицы отвечают за «зажженные» пиксели. Например, цифра «8» кодируется последовательностью 0x6c,0x92,0x92,0x92,0x6c.
Коды команд приведены в таблице.

Таблица символов HD44780


Значения флагов:


Остается открытым вопрос: «как записать в нужную позицию код требуемого символа»? Для этого рассмотрим за что отвечают выводы ЖКИ . Выводы DB0-DB7 отвечают за входящие/исходящие данные. Высокий уровень на выводе RS дает индикатору понять, что сигнал на выводах DB0-DB7 является данными, а низкий – командой. Вывод W/R отвечает за направление данных, пишутся ли данные в память или читаются из нее (обычно чтение из ЖКИ не используется, можем смело на него подать низкий уровень). Импульс на выводе Е (длительностью не менее 500 нс) используется как сигнал для записи/чтения данных с выводов DB0-DB7 , RS и W/R .

Вывод V0 используется для задания контраста изображения, вывода А,К – для питания подсветки (если она есть в вашей модели ЖКИ ). Оставшиеся 2 вывода – собственно питание ЖКИ . То есть, для управления ЖКИ потребуется 8+1+1=10 выводов. Но можно работать в режиме 4-х битного интерфейса. При этом, сперва будет передавать старшая тетрада команды/данных на выводах DB4-DB7, а после – младшая. Выводы при DB0-DB3 при этом не используются. Итого для управления требуется 6 выводов микроконтроллера.
Теперь рассмотрим живой пример. Напишем программу для вывода текста «сайт» на имеющийся у меня в наличии WH1602А (2 строки по 16 символов).

Для других ЖКИ следует сверить соответствие ячеек DDRAM знакоместам. Схема подключения ЖКИ к контроллеру выглядит так.

Схема подключения к микроконтроллеру AVR


Резистор R3 - 17 Ом ограничивает ток через подсветку, а переменный VR1 задает контраст (если все правильно подключено и запрограммировано, но индикатор молчит, покрутите VR1, чтобы изображения стало видимым). Также не в коем случае не следует путать полярность ЖКИ , питать его выше 5,5В, со своего опыта могу сказать, что горят они моментально. Назначение всех остальных деталей такое же как в
Теперь перейдем к написанию программы. Для контроля индикатора напишем программу с несколькими ключевыми функциями работы с ЖКИ : lcd_dat(unsigned char x) – для записи данных х, lcd_com(unsigned char x) – для записи команды х, lcd_init(void) – для начальной инициализации индикатора:

    #include //библиотека ввода/вывода

  1. #define RS 2 //RS=PD2 - сигнал управления ЖКИ

    #define E 3 //E=PD3 - сигнал управления ЖКИ

  2. #define TIME 10 //Константа временной задержки для ЖКИ

    //Частота тактирование МК - 4Мгц

  3. //Программа формирвоания задержки

    void pause (unsigned int a)

    { unsigned int i;

  4. for (i= a; i> 0 ; i-- ) ;

  5. //Программа передачи команд в ЖКИ

    void lcd_com (unsigned char lcd)

    { unsigned char temp;

  6. temp= (lcd& ~(1 << RS) ) | (1 << E) ; //RS=0 – это команда

    PORTD= temp; //Выводим на portD старшую тетраду команды, сигналы RS, E

    asm("nop" ) ;

    PORTD= temp& ~(1 << E) ; //Сигнал записи команды

  7. temp= ((lcd* 16 ) & ~(1 << RS) ) | (1 << E) ; //RS=0 – это команда

    PORTD= temp; //Выводим на portD младшую тетраду команды, сигналы RS, E

    asm("nop" ) ; //Небольшая задержка в 1 такт МК, для стабилизации

    PORTD= temp& ~(1 << E) ; //Сигнал записи команды

  8. pause (10 * TIME) ; //Пауза для выполнения команды

  9. //Программа записи данных в ЖКИ

    void lcd_dat (unsigned char lcd)

    { unsigned char temp;

  10. temp= (lcd| (1 << RS) ) | (1 << E) ; //RS=1 – это данные

    PORTD= temp; //Выводим на portD старшую тетраду данных, сигналы RS, E

    asm("nop" ) ; //Небольшая задержка в 1 такт МК, для стабилизации

    PORTD= temp& ~(1 << E) ; //Сигнал записи данных

  11. temp= ((lcd* 16 ) | (1 << RS) ) | (1 << E) ; //RS=1 – это данные

    PORTD= temp; //Выводим на portD младшую тетраду данных, сигналы RS, E

    asm("nop" ) ; //Небольшая задержка в 1 такт МК, для стабилизации

    PORTD= temp& ~(1 << E) ; //Сигнал записи данных

  12. pause(TIME) ; //Пауза для вывода данных

  13. //Программа иниализации ЖКИ

    void lcd_init (void )

    lcd_com(0x2c ) ; //4-проводный интерфейс, 5x8 размер символа

    pause(100 * TIME) ;

    pause(100 * TIME) ;

    pause (100 * TIME) ;

  14. //Основная программа

    int main(void )

    DDRD= 0xfc ; //Инициализация portD

    PORTD= 0x00 ;

  15. pause(1000 ) ;

    lcd_init() ; //Инициализация ЖКИ

  16. lcd_dat("w" ) ; //Вывод "www.сайт"

    lcd_dat("w" ) ;

    lcd_dat("w" ) ;

    lcd_dat("." ) ;

    lcd_dat("a" ) ;

    lcd_dat("v" ) ;

    lcd_dat("r" ) ;

    lcd_dat("l" ) ;

    lcd_dat("a" ) ;

    lcd_dat("b" ) ;

    lcd_dat("." ) ;

    lcd_dat("c" ) ;

    lcd_dat("o" ) ;

    lcd_dat("m" ) ;

  17. lcd_dat("I" ) ; //Записываем "It"s so easy"

    lcd_dat("t" ) ;

    lcd_dat(""" ) ;

    lcd_dat("s" ) ;

    lcd_dat(" " ) ;

    lcd_dat("s" ) ;

    lcd_dat("o" ) ;

    lcd_dat(" " ) ;

    lcd_dat("e" ) ;

    lcd_dat("a" ) ;

    lcd_dat("s" ) ;

    lcd_dat("y" ) ;

  18. while (1 ) //бесконечный цикл

  19. return 1 ;

Программа очень проста, разобраться в ней не составит труда любому, кто хоть немного владеет C для AVR . Для латиницы и цифр ASCII коды совпадают с зашитыми в знакогенератор ЖКИ , поэтому позволительно использовать lcd_dat(‘A’) . Можно создать свою библиотеку для работы с ЖКИ, выделив функции lcd_dat(unsigned char x), lcd_com(unsigned char x), lcd_init(void) в отдельный модуль LCD.h и подключать его за надобностью.

Эта затея очень экономит время, стоит только один раз написать нужные функции, а потом все время их только использовать. Также можно подметить, что неудобно выводить длинную фразу по одной букве, для этого можно нашу выводимую строку запихнуть в массив из unsigned char и выводить с помощью цикла:

    int main(void )

    { unsigned char data [ 14 ] = { "w" , "w" , "w" , "." , "a" , "v" , "r" , "l" , "a" , "b" , "." , "c" , "o" , "m" } ;

    unsigned char i;

    DDRD= 0xfc ; //Инициализация portD

    PORTD= 0x00 ;

  1. pause(1000 ) ; //Задержка, чтобы ЖКИ успел включиться

    lcd_init() ; //Инициализация ЖКИ

  2. for (i= 0 ; i< 14 ; i++ ) //Вывод записи побуквенно

    lcd_dat(data[ i] ) ;

Только не стоит забывать, что нумерация массивов в С начинается с нуля. Существующую программу можно без существенных изменений использовать совместно с контроллером ATtiny2313 , подключив ЖКИ к PORTB , та как PORTD у ATtiny2313 имеет всего 7 выводов, а не 8, как у ATmega8 .

Также советую подключать ЖКИ с помощью разъемных соединений. Очень удобно при отладке программы, когда нужно вывести некоторые промежуточные данные. Подсоединил один разъем и всего дела. В продолжение этой заметки в ближайшее время рассмотрю и отображение считанной информации на ЖКИ .
Всем хорошего дня;)

есть маленький недочет в этом примере

есть маленький недочет в этом примере, возможно по этой причине у многих не работает пример!

вобщем пример лаконичен и прост, поэтому в глаза не бросается маленький недочет(тем кто ориентируется в языке "С"), и уж тем более тем кто только только знакомится с AVR и языком "С", возможно они даже недоумевают как так....пишут сделайте так и будет как на картинке....а не тут то было...

вобщем вся проблема с циклами задержки, для того чтоб дисплей поспевал за контроллером, а именно в функции-

//Программа формирвоания задержки

void pause (unsigned int a)

{ unsigned int i;

for (i=a;i>0;i--);

вроде на первый взгляд все верно, но компиляторы для микроконтроллеров стремятся оптимизировать код для максимальной компактности получаемого образа флешь памяти программ... и не видя никакого смысла в пустом цикле и соответственно далее по цепочке за ним: все вызовы, объявления констант и всего связанного с этой безсмысленно по его разумению функцией...попросту убирает это из кода во время сборки...

по крайней мере это справедливо для atmel studio 6.1, и в этом можно убедится просмотрем папку проэкта, там есть *.lss файл содержащий асемблерный код данной программы, генерируемы при сборке проекта. никакого намека на реализацию функции void pause...

в итоге при прошивке контроллера на дисплее получается случайный мусор или пустота...при нажатии несколько раз на ресет мусор может исчезать и вновь появлятся...явно на лицо расссинхронизация проца и экрана

а вот если сделать маленькую поправку

void pause (unsigned int a)

{ unsigned int i;

for (i=a;i>0;i--)
asm("nop");

То для компилятора это обретает смысл, это так же подтверждается явным появлением реализации функции в асемблерном коде

0000006c
:
6c: 9c 01 movw r18, r24
6e: 03 c0 rjmp .+6 ; 0x76
70: 00 00 nop
72: 21 50 subi r18, 0x01 ; 1
74: 31 09 sbc r19, r1
76: 21 15 cp r18, r1
78: 31 05 cpc r19, r1
7a: d1 f7 brne .-12 ; 0x70

и скорей всего все заработает....покрайней мере у меня на atmega16 (внутренняя RC синхронизация 1Mhz) и использовании atmel studio 6.1 было именно так... возможно на др частотах придется поигратся с константой #define TIME 10 и/или значениями передаваемыми функции void pause

вот здесь-> pause(значение) ...или pause(значение*TIME) ....

удачи в обучении управлению AVR!

Смотри, представь что ЖКИ -

Смотри, представь что ЖКИ - пишущая машинка, бумага в машинке - память ЖКИ, каретка - указатель курсора. Кроме того ЖКИ на экран выводит не все содержимое памяти, а лишь часть. Вроде как некоторое окно, которое мы налаживаем на нашу бумагу с текстом.

Вот I/D задает как мы будем печатать, справа-налево или слева-направо.
S определяет, будем ли мы сдвигать окно экрана вслед за тем, как печатаем или нет.
S/C - просто смещает видимое окно экрана или каретку машинки.
R/L - уточняет куда (влево или вправо) мы будем сдвигать экран или курсов с помощью флага S/C.

чего-то помоему не хватает!

Содрал вашу прогу и протэусе и на меги8 не стартует. Экран молчит, стал копать по даташитам и вот что нарыл:
не хватает в инициализации первых трех!

0011 - ждем 5 мс
0011 - ждем 100 мкс
0011 - ждем 2 мс
0010 - ждем 41 мкс
0000 - -и-
0010 - -и-
1000
0000
1000
0000
0001
0000
0100

если я не прав поправте!

Не работает!

Попробовал поменять частоты тактирования, задержки при инициализации и выводе символов(команд), пока что безуспешно. По поводу фьюзов, если вы имеете ввиду сконфигурировать выводы порта D c помощью регистров DDRB, PORTD как выходы с низким лог. уровнем, то это я сделал.
От делать нечего скомпилировал простую прогу вывода символов с помощью средств CodeVisionAVR, загнал в PROTEUS - работает!...а с реальным LCD отказывается..

Нет я говорю о том, что

Нет я говорю о том, что попробуй на порт D вывести например мигалку, или просто зажечь сразу весь порт. Я когда купил только микроконтроллер у меня этого не получилось сделать. Порыл форумы, оказалось что там как-то фьюзы запрограммированы что порт D и все его 8 бит не включены. Проверь этот момент, а лучше попробуй перевесить ЖКИ на другой порт например на B. То что программа в протеусе работает а с реальным нет - это и есть разница в параметрах ЖКИ забитого в протеусе и реального.

Не работает!

Собрал и подключил всё как по схеме, только МК использовал ATmega16 и LCD WH1602M, соответственно откомпилировал в WinAVR для него прошивку. Однако, выводить что либо LCD отказался, также собирал в протеусе(на ATmega 8 и LM016L), данные с МК выводятся но на LCD ничего не видно. В чем может быть проблема? (Если это важно, использовал внутренний RC генератор для тактирования на 1 мГц)

1. Для Atmega16 необходимо

1. Для Atmega16 необходимо через фьюзы включить сперва что бы порт D работал.
2. Попробуй изменить частоту тактирования на 4МГц и на 8МГц. Вся проблема ЖКИ в том, что не выдержаны все паузы при инициализации или при подаче команды. А контроллер ЖКИ очень чувствительный к этому.

Есть вопрос:
Собрал схемку хронометра на меге 8 с готовым хексом, - показания выводятся на WH0802,
показание- число из трех цифр, которые выводятся на весь экран, одна цифра состоит из 4-х знакомест. Экран типа псевдографический. Каким образом могла писаться прошивка??
Автор категорически отказывается давать исходники и не комментирует работу- наверное из соображения "интеллектуальной собственности".
По-свободе хочу попробовать написать свою прошивку в учебных целях.

Столкнулся с такой

Столкнулся с такой ситуацией.
Есть два LCD 16х2:
1 - MTC-S16204XFGHSAY
2 - WH1602A-YGH-CTK

1-ый использую в проекте с GPS.
2-ой решил использовать в проекте с клавиатурой. Но по каким то причинам lcd не работает.
Контраст регулируется и появляются квадратики. И все.
Возможно там другой порядок инициализации.
Помогите разобраться
Вот даташиты
filebox.od.ua/?file=24a31fc50d62bfcd658bdadac84088ab

Дисплеи ничем не отличаются.

Дисплеи ничем не отличаются. Распиновка одинакова. Тайминги немного разнятся. Попробуй увеличить задержки при отсылке команд на ЖКИ или понизь частоту МК.

Все ЖКИ на HD44780 имеют идентичную систему команд. Ты какой интерфейс юзаеш, 4-х битный, или 8-ми битный? Еще попробуй увеличить задержку между включением ЖКИ и его инициализацией, примерно до 0,1с. Полярность питания для ЖКИ не путалась, чтобы сгореть им немного надо? То я сдуру как-то спалил, а потом пытался подключить. Тоже выводились черные квадратики, через раз выводились данные, т.е. работал крайне нестабильно.

Использую программы из статей

Использую программы из статей о GPS.
интерфейс 4-ех битный

попробовал прогу отсюда
chipenable.ru/index.php/programming-c/75-chasy-na-mikrokontrollere.html

заработало

А что изменить в вашей проге?

Обрати внимание на задержки

Обрати внимание на задержки после подачи команд инициализации и конфигурирования, может в том дело. У меня был случай тоже примерно такой, но контроллеры были и тот и тот одинаковые, а програма работала только на одном.

Аналоги HD44780

Столкнулся с проблемой - не могу найти ЖКИ WH1602A по разумной цене. Например
в чипдипе такие стоят chipdip.ru/product/wh1602a-ygh-ct-k.aspx
700 деревянных. Что такое YGH в названии "WH1602A-YGH-CT(K), ЖКИ 16х2, англо-русский"
Какие есть аналоги ЖКИ на базе HD44780? Вот нашёл страничку micronika.ru/order.phtml?vid=64 - там в названии FDCC1602A-FSBFBW-51SR содержится 1602A,
просто обратил внимание. Может и FDCC1602A-FSBFBW-51S сойдёт без особого изменения кода?
Какие проблемы могут возникнуть при использовани
не собственно HD44780 от Хитачи, а его аналогов?
ЗЫ Не плохо бы почитать про использование различных ЖКИ, аналогов хд44780, чем МЭЛТ"овские
ЖКИ плохи

Loading...Loading...