Частота шины pci в биосе. Безопасный разгон прямо из Windows. Подготовка: собираем информацию о материнской плате

Приветствую, дорогие друзья, знакомые, читатели, почитатели и прочие личности. Если Вы помните, то очень давно мы поднимали , но чисто в теоретическом разрезе, а после обещали сделать статью практическую.

Учитывая, что разгон таки штука довольно непростая и неоднозначная, то статей в этом цикле будет довольно приличное количество, а подзабросили мы его по одной простой причине, - тем для написания, помимо оного, существует бесконечное множество и везде успеть просто невозможно.

Сегодня мы рассмотрим самую базовую и типичную сторону разгона, но при всём при этом максимально затронем важнейшие и ключевые нюансы, т.е дадим понимание как оно работает на примере.

Приступим.

Разгон процессора в разрезе [на примере платы P5E Deluxe].

Собственно, можно сказать, что варианта разгона бывает два: с помощью программ или непосредственно из BIOS .

Программные методы мы сейчас не будем рассматривать по множествам причин, одна (и ключевая) из которых, - это отсутствие стабильной адекватной защиты системы (да и, в общем-то железа, если конечно не считать таковыми) в случае установки некорректных настроек находясь непосредственно в Windows . С разгоном же непосредственно из BIOS всё выглядит куда более разумно, а посему мы будем рассматривать именно этот вариант (к тому же, он позволяет задать большее количество настроек и добиться большей стабильности и производительности).

Вариантов BIOS "а существует довольно большое количество (а с приходом UEFI их стало и того больше), но основы и концепции разгона сохраняют свои принципы из года в год, т.е подход к нему не меняется, если не считать интерфейсы, местами названия настроек и ряд технологий этого самого разгона.

Я рассмотрю здесь пример на основе своей старенькой мат.платы (про которую я когда-то очень давно рассказывал ) и процессора Core Quad Q6600 . Последний, собственно, служит мне верой и правдой уже черт знает сколько лет (как и мат.плата) и разогнан мною изначально с 2,4 Ghz до 3,6 Ghz , что Вы можете увидеть на скриншоте из :

К слову, кому интересно, таки о том как выбирать столь хорошие и надежные мат.платы мы писали , а про процессоры . Я же перейду к непосредственно процессу разгона, предварительно напомнив следующее:

Предупреждение! Ахтунг! Аларм! Хехнде хох!
Всю ответственность за Ваши последующие (равно как и предыдущие) действия несёте только Вы. Автор лишь предоставляет информацию, пользоваться или нет которой, Вы решаете самостоятельно. Всё написанное проверено автором на личном примере (и неоднократно) и в разных конфигурациях, однако сие не гарантирует стабильную работу везде, равно как и не защищает Вас от возможных ошибок в ходе проделанных Вами действий, а так же любых последствий, что могут за ними наступить. Будьте осторожны и думайте головой.

Собственно, что нам нужно для успешного разгона? Да в общем-то ничего особенного не считая второго пункта:

  • Во-первых, прежде всего, конечно же, компьютер со всем необходимым, т.е мат.платой, процессором и тп. Узнать, что за начинка у Вас стоит, Вы можете скачав вышеупомянутый ;
  • Во-вторых, таки обязательно, - это хорошее охлаждение, ибо разгон прямым образом влияет на тепловыделение процессора и элементов материнской платы, т.е без хорошего обдува, в лучшем случае, разгон приведет к нестабильности работы или не будет иметь свой силы, а в худшем случае, что-нибудь таки попросту сгорит;
  • В-третьих же, само собой, необходимы знания, дать которые призвана эта статья, из этого цикла, а так же весь сайт " ".

Касаемо охлаждения хочется отметить следующие статьи: " ", " ", а так же " ". Всё остальное можно найти вот так вот. Идем далее.

Так как всю необходимую теорию мы уже подробно разобрали в , то я сразу перейду к практической стороне вопроса. Заранее прошу прощения за качество фото, но монитор глянцевый, а на улице, не смотря на жалюзи, таки светло.

Вот так выглядит BIOS на борту моей мат.платы (попасть в BIOS , напомню, на стационарном компьютере, можно кнопочкой DEL на самой ранней стадии загрузки, т.е сразу после включения или перезапуска):

Здесь нас будет интересовать вкладка "Ai Tweaker ". В данном случае именно она отвечает за разгон и изначально выглядит как список параметров с выставленными напротив значениями "Auto ". В моём случае она выглядит уже вот так:

Здесь нас будут интересовать следующие параметры (сразу даю описание + моё значение с комментарием почему):

  • Ai Оverclock Tuner - занимается авторазгоном, якобы с умом.
    В значении "Standard" всё работает как есть, в случае с "Overclock 5% , Overclock 10% , Overclock 20% , Overclock 30% " автоматически увеличивает частоты на соответствующий процент (причем без гарантий стабильности).Нас здесь интересует значение Manual , ибо оно позволит всё выставить нам ручками. Собственно, оно у меня и стоит.
  • Cpu Ratio Setting - задаёт множитель процессора. Можно выставить своё значение, при учете, что множитель процессора разблокирован.Я здесь выставил 9.0 , т.е максимально доступное из разблокированных значение множителя для моего процессора. Вам необходимо поступить аналогичным образом для Вашего процессора.
  • FSB Frequency - задаёт частоту системной шины процессора, она же так называемая, базовая частота. Как Вы помните из теоретической статьи, конечная частота процессора получается из значения этой частоты, умноженного на множитель (как звучит! :)) процессора.Частота эта в нашем процессе является основной и именно её, в основном, мы и меняем, чтобы разогнать процессор. Значение подбирается опытным путём, методом комбинирования с другими параметрами до достижения момента, когда система работает стабильно и температурный режим Вас устраивает. В моём случае удалось взять планку в "400 x 9 = 3600 Mhz" . Были моменты, когда я брал 3,8 Ghz , но охлаждение попросту не справлялось в пиковых нагрузках с тепловыделением.
  • FSB Strap to North Bridge - параметр здесь есть ничто иное как набор предустановленных задержек, которые с точки зрения производителя оптимально соответствуют определенной частоте системной шины, для определенного диапазона рабочих частот чипсета. Здесь они задаются для северного моста.При установке значения FSB Strap следует учитывать, что при меньшем значении устанавливаются меньшие задержки и увеличивается производительность, а при установке большего значения немного падает производительность, но повышается стабильность. Наиболее актуальна опция при разгоне для обеспечения стабильности при высокой частоте FSB .Мне пришлось выбрать высокое значение, чтобы добиться стабильности. В моём случае это 400 .
  • PCIE Frequency - указывает частоту для шины PCI Express . Разгон шины PCI Express обычно не практикуется: мизерный выигрыш в быстродействии не оправдывает возможные проблемы со стабильностью работы карт расширения, посему тут фиксируем стандартные 100 Mhz , дабы повысить стабильность.Т.е в моём случае, - здесь значине 100 . Его Вам тоже рекомендую.
  • DRAM Frequency - позволяет задавать частоту оперативной памяти. Параметры для выбора меняются в зависимости от выставленной частоты FSB . Здесь стоит отметить, что часто разгон "упирается" именно в память, посему оптимальным считается задавать такую частоту FSB при которой здесь можно выбрать рабочую (стандартную) частоту Вашей оперативной памяти, если, конечно же, Вы не стремитесь разогнать именно память. Значение "Auto" часто вредно и не даёт должного результата с точки зрения стабильности.В моём случае выставлено "800" в соответствии с характеристиками оперативной памяти. В Вашем случае выставляйте как считаете нужным, но я рекомендую посмотреть Вашу стандартную частоту через CPU-Z и ставить её.
  • DRAM Сommand Rate - ничто иное как задержка при обмене командами между контроллером памяти чипсета и памятью. Качественные модули памяти способны работать при задержке в 1 такт, но на практике это встречается редко и не всегда зависит именно от качества. Для стабильности рекомендуется выбирать 2T , для быстродействия 1T .Так как порог разгона взят большой, то я выбирал здесь 2T , ибо в других положениях полной стабильности добиться не удавалось.
  • DRAM Timing Control - задаёт тайминги оперативной памяти. Как правило, если целью не стоит разгон оперативной памяти, то здесь мы оставляем параметр "Auto ". Если Вы катастрофически уперлись при разгоне в память и не пролезаете даже по частоте, то есть смысл попробовать немного завысить здесь значения вручную, отказавшись от автоматического параметра.В моём случае, - это "Auto" , т.к в память не упирался.
  • DRAM Static Read Control - значение " Enabled" поднимает производительность контроллера памяти, а " Disabled" – снижает. Соответственно от этого зависит и стабильность.В моём случае "Disabled " (в целях повышения стабильности).
  • Ai Сlock Twister - если брать в вольном переводе, то эта штука управляет количеством фаз доступа к памяти. Более высокое значение (Strong ) отвечает за повышение производительности, а более низкое (Light ) за стабильность.Я выбрал "Light " (в целях повышения стабильности).
  • Ai Transaction Booster - здесь я вычитал много буржуйских форумов из которых многие данные противоречат друг другу, как и в русскоязычном сегменте. Где-то пишут, что эта штука позволяет ускорить или замедлить работу подсистемы памяти, корректируя параметры подтаймингов, влияющих в свою очередь на скорость работы контроллера памяти.Единственное, что адекватно удалось понять, что переключив сие в "Manual " мы можем настроить "Perfomance Level ", играясь со значением в цифре до того момента, когда не поймаем этап стабильности. У меня этот параметр застрял на 8- ке, ибо при других значениях система вела себя не стабильно.
  • VCORE Voltage - функция позволяет вручную указать напряжение питания ядра процессора. Не смотря на то, что именно эта радость часто позволяет повысить производительность (точнее сильнее разогнать процессор) путём повышения стабильности (без большего питания Вы вряд ли получите больший прирост и качество работы, что логично) при разгоне, - таки этот параметр крайне опасная игрушка в руках непрофессионала и может привести к выходу процессора из строя (если в BIOS конечно не вшита функция защиты, как говорится, "от дурака" (с), как это есть в ), а посему не рекомендуется изменять значение питания процессора, более чем на 0.2 от штатного. Вообще говоря, этот параметр стоит увеличивать очень постепенно и очень маленькими шажками, покоряя всё новые и новые высоты производительности, до тех пор, пока не упретесь во что-то еще (память, температуры и тп), либо пока не достигните лимита в +0.2 .
    Я бы не рекомендовал смотреть на моё значение, ибо оно является действительно завышенным, но играть в эти игры мне позволяет мощное охлаждение (фотография выше не считается, она устарела еще в 2008 -ом году), хороший БП, процессор и мат.плата. Будьте, в общем, осторожны, особенно на бюджетных конфигурациях. Моё значение 1,65 . Узнать родной вольтаж для Вашего процессора можно из документации или через CPU-Z .
  • CPU PPL Voltage - нечто из для стабильности, но у меня существует очень расплывчатое определение того, что это за вольтаж. Если всё работает как нужно, то лучше не трогать. Если нет, то можно повышать маленькими шажками.Моё значение, - 1.50 , ибо упёрся по стабильности, когда брал частоту 3,8 Ghz . Опять же, опирается оно на мой процессор.
  • FSB Termination Voltage - иногда называется дополнительным напряжением питания процессора или напряжением питания системной шины. Его увеличение способно в некоторых случаях повысить разгонный потенциал процессора.Моё значение, - 1.30 . Опять же, стабильность при более высокой частоте.
  • DRAM Voltage - позволяет вручную указать напряжение питания модулей памяти. Трогать имеет смысл в редких случаях для повышения стабильности и покорения более высоких частот при разгоне памяти или (редко) процессора.У меня чуть завышено, - 1.85 при родных 1.80 .
  • North Bridge Voltage и Soulth bridge voltage - задаёт напряжение питания северного (North ) и южного (Soulth ) мостов соответственно. Повышать с осторожностью в целях повышения стабильности.У меня, - 1.31 и 1.1 . Всё в тех же целях.
  • Loadline Calibration - достаточно специфичная штука, позволяющая скомпенсировать проседаниенапряжения питания ядра при увеличении нагрузки на процессор.
    В случае с разгоном всегда стоит выставлять "Enabled" , как Вы и видите у меня на скриншоте.
  • CPU Spread Spectrum - включение этой опции способно уменьшить уровень электромагнитного излучения компьютера за счет худшей формы сигналов системной шины и центрального процессора. Естественно, не самая оптимальная форма сигналов способна снизить стабильность работы компьютера.Поскольку уменьшение уровня излучения незначительно и не оправдывает возможные проблемы с надежностью, опцию лучше выключить (Disabled ), особенно, если вы занимаетесь разгоном, т.е как в нашем случае.
  • PСIE Spread Spectrum - аналогично тому, что выше, но только в случае с шиной PCI Express .Т.е, в нашем случае - "Disabled ".

Если говорить совсем упрощенно, то, в первую очередь, мы с Вами меняем множитель и частоту FSB , опираясь на ту конечную частоту процессора, что мы хотели бы получить. Далее сохраняем изменения и пробуем загрузится. Если всё получилось, то проверяем температуры, и компьютера вообще, после чего, собственно, либо оставляем всё как есть, либо пробуем взять новую частоту. Если же на новой частоте стабильности нет, т.е Windows не грузится или появляются синие экраны или что-то еще, то либо возвращаемся к прошлым значениям (или чуть утихомириваем свои аппетиты), либо подбираем все остальные значения ровно до тех пор, пока стабильность не будет достигнута.

Что касается различных типов BIOS , то где-то функции могут называться как-то иначе, но смысл несут они один и тот же, равно как и значения + принцип разгона остаются постоянными. В общем, при желании, разберетесь.

В двух словах как-то так. Остаётся лишь перейти к послесловию.

Послесловие.

Как видите из последних предложений, если задуматься, то быстрый разгон в общем-то не проблема (особенно при наличии хорошего охлаждения). Выставил два параметра, несколько перезагрузок и, - вуаля!, - заветные мегагерцы в кармане.

Тщательный же хороший разгон хотя бы на 50 %, т.е как в моём случае на 1200 Mhz плюсом к 2400 Mhz , требует некоего количества времени (в среднем это где-то 1-5 часов, в зависимости от удачливости и желаемого конечного результата), большую часть из которого отнимает шлифовка стабильности и температур, а так же пачку терпения, ибо больше всего в сим раздражает постоянная необходимость перезагрузок для сохранения и последующего тестирования новых параметров.

Подозреваю, что у желающих заняться сим процессом будет много вопросов (что логично), а посему, если они таки есть (равно как и дополнения, мысли, благодарности и прочее), то буду рад увидеть их в комментариях.

Оставайтесь с нами! ;)

PS : Крайне настоятельно не рекомендую заниматься разгоном ноутбуков.

Текущая страница: 6 (всего у книги 11 страниц)

Шрифт:

100% +

Параметры разгона чипсета и шин

Повысив частоты чипсета и шин, можно поднять их производительность, однако на практике чаще возникает необходимость установить фиксированные значения этих частот, чтобы избежать их чрезмерного повышения при разгоне процессора.

НТ Frequency (LDT Frequency, НТ Link Speed)

С помощью этого параметра изменяется частота шины НТ (HyperTransport), по которой обмениваются данными процессоры компании AMD с чипсетом. В качестве значений данного параметра могут использоваться множители, и для расчета фактической частоты следует умножить выбранный множитель на значение базовой частоты (200 МГц). А в некоторых версиях BIOS вместо множителей нужно выбирать частоту шины НТ из нескольких доступных значений.

Для процессоров семейства Athlon 64 максимальная частота НТ была равна 800-1000 МГЦ (множитель 4 или 5), а для процессоров Athlon П/Phenom II – 1800-2000 МГЦ (множитель 9 или 10). При разгоне множитель для шины НТ иногда придется понижать, чтобы после поднятия базовой частоты частота НТ не вышла за допустимые пределы.

AGP/PCI Clock

Параметр устанавливает частоты шин AGP и PCI.

Возможные значения:

□ Auto – частоты выбираются автоматически;

□ 66.66/33.33, 72.73/36.36, 80.00/40.00 – частота шин AGP и PCI соответственно. Стандартным является значение 66.66/33.33, а другие могут использоваться при разгоне.

PCIE Clock (PCI Express Frequency (MHz))

Параметр позволяет вручную изменять частоту шины PCI Express.

Возможные значения:

□ Auto – установлена стандартная частота (обычно 100 МГц);

□ от 90 до 150 МГц – частоту можно задать вручную, а диапазон регулировки зависит от модели системной платы.

CPU Clock Skew (MCH/ICH Clock Skew)

Параметры позволяют регулировать смещение тактовых сигналов процессора (CPU), а также северного (МСН) и южного (ICH) мостов.

Возможные значения:

□ Normal – будет автоматически установлено оптимальное значение (рекомендуется для нормального режима работы и умеренного разгона);

□ от 50 до 750 – величина смещения тактовых сигналов в пикосекундах. Подбор этого параметра может улучшить стабильность системы при разгоне.

FSB Strap to North Bridge

Параметр используется в некоторых платах для установки режима работы северного моста чипсета в зависимости от частоты FSB.

Возможные значения:

□ Auto – параметры чипсета настраивается автоматически (это значение рекомендуется для работы компьютера в штатном режиме);

□ 200 MHz, 266 MHz, 333 MHz, 400 MHz – частота FSB, для которой устанавливается режим работы чипсета. Более высокие значения увеличивают максимально возможную частоту FSB при разгоне, но снижают производительность чипсета. Оптимальное значение параметра при разгоне обычно приходится подбирать экспериментально.

Регулировка напряжения питания чипсета

Кроме напряжения питания процессора и памяти, некоторые системные платы также позволяют регулировать напряжение компонентов чипсета и уровни сигналов. Название соответствующих параметров может быть различным в зависимости от производителя платы. Вот несколько примеров:

□ Chipset Core PCIE Voltage;

□ MCH & PCIE 1.5V Voltage;

□ PCH Core (PCH 1,05/1,8);

□ NF4 Chipset Voltage;

□ PCIE Voltage;

□ FSB OverVoltage Control;

□ NВ Voltage (NBVcore);

□ SB I/O Power;

□ SB Core Power.

Практика показывает, что изменение указанных напряжений в большинстве случаев не дает заметного эффекта, поэтому оставляйте для этих напряжений значение Auto (Normal).

Spread Spectrum

При работе компонентов современного компьютера на высоких частотах возникает нежелательное электромагнитное излучение, которое может быть источником помех для различных электронных устройств. Чтобы несколько уменьшить величину импульсов излучения, применяют спектральную модуляцию тактовых импульсов, что делает излучение более равномерным.

Возможные значения:

□ Enabled – режим модуляции тактовых импульсов включен, что немного снижает уровень электромагнитных помех от системного блока;

□ 0.25 %, 0.5 % – уровень модуляции в процентах (задается в некоторых версиях BIOS);

□ Disabled – режим Spread Spectrum отключен.

СОВЕТ

Для стабильной работы системы при разгоне всегда отключайте Spread Spectrum.

В некоторых моделях системных плат есть несколько самостоятельных параметров, управляющих режимом Spread Spectrum для отдельных компонентов системы, например CPU Spread Spectrum, SATA Spread Spectrum, PCIE Spread Spectrum и др.

Подготовка к разгону

Перед разгоном обязательно предпримите несколько важных шагов.

□ Проверьте стабильность работы системы в штатном режиме. Нет никакого смысла разгонять компьютер, который в обычном режиме склонен к сбоям или зависаниям, поскольку разгон только усугубит эту ситуацию.

□ Найдите все необходимые параметры BIOS, которые понадобятся при разгоне, и разберитесь с их назначением. Эти параметры были описаны выше, но для разных моделей плат они могут различаться, и для учета особенностей конкретной платы нужно изучить инструкцию к ней.

□ Разберитесь со способом обнуления BIOS для вашей модели платы (см. гл. 5). Это необходимо, чтобы сбросить настройки BIOS при неудачном разгоне.

□ Проверьте рабочие температуры основных компонентов и их охлаждение. Для контроля температур можно использовать диагностические утилиты с компакт-диска к системной плате или же программы независимых разработчиков: EVEREST, SpeedFan (www.almico.com) и др. Чтобы улучшить охлаждение, возможно, придется заменить процессорный кулер на более мощный, а также принять меры для улучшения охлаждения чипсета, видеоадаптера и оперативной памяти.

Разгон процессоров Intel Core 2

Семейство процессоров Intel Core 2 является одним из наиболее удачных за всю историю компьютерной индустрии благодаря высокой производительности, невысокому тепловыделению и отличному разгонному потенциалу. Начиная с 2006 года компания Intel выпустила десятки моделей процессоров этого семейства под различными торговыми марками: Core 2 Duo, Core 2 Quad, Pentium Dual-Core и даже Celeron.

Для разгона процессоров Core 2 необходимо повышать частоту FSB, штатное значение которой может составлять 200, 266, 333 или 400 МГц. Точное значение частоты FSB вы можете узнать в спецификации к вашему процессору, однако не забывайте, что частота FSB указывается с учетом четырехкратного умножения при передаче данных. Например, для процессора Core 2 Duo Е6550 2,33 ГГц (1333 МГц FSB) реальное значение частоты FSB составляет 1333: 4 = 333 МГц.

При повышении частоты FSB будут автоматически повышаться частоты работы оперативной памяти, чипсета, шин PCI/PCIE и других компонентов. Поэтому перед разгоном следует принудительно их уменьшить, чтобы узнать максимальную рабочую частоту процессора. Когда же она будет известна, можно подобрать оптимальные рабочие частоты для других компонентов.

Последовательность разгона может быть такой.

1. Установите оптимальные настройки BIOS для вашей системы. Выберите значение Disabled (Off) для параметра Spread Spectrum, который не очень совместим с разгоном. Таких параметров у вас может оказаться несколько: для процессора (CPU), шины PCI Express, интерфейса SATA и др.

2. На время выполнения разгона отключите технологии энергосбережения Intel SpeedStep и С1Е Support. После завершения всех экспериментов можно снова включить эти функции для уменьшения энергопотребления процессора.

3. Установите вручную частоты шин PCI/PCIE. Для шины PCI следует установить частоту 33 МГц, а для PCI Express лучше задать значение в пределах 100-110 МГц. В некоторых моделях плат при значении Auto или паспортном значении 100 МГц результаты могут получиться хуже, чем при нестандартном значении частоты 101 МГц.

4. Уменьшите частоту работы оперативной памяти. В зависимости от модели платы это можно сделать одним из двух способов:

■ установить минимальное значение частоты оперативной памяти с помощью параметра Memory Frequency или подобного (для доступа к этому параметру, возможно, понадобится отключить автоматическую настройку памяти);

■ установить минимальное значение множителя, определяющего соотношение частоты FSB и памяти, с помощью параметра FSB/Memory Ratio, System Memory Multiplier или аналогичного.

Поскольку способы изменения частоты памяти в разных платах различаются, рекомендуется перезагрузить компьютер и с помощью диагностических утилит EVEREST или CPU-Z убедиться, что частота памяти действительно уменьшилась.

5. После подготовительных действий можно приступать непосредственно к процедуре разгона. Для начала можно поднять частоту FSB на 20-25 % (например, с 200 до 250 МГц или с 266 до 320 МГц), после чего попробовать загрузить операционную систему и проверить ее работу. Параметр для установки может называться CPU FSB Clock, CPU Overclock in MHz или как-то по-другому.

ПРИМЕЧАНИЕ

Для получения доступа к ручной регулировке FSB вам, возможно, придется отключить автоматическую установку частоты процессора (параметр CPU Host Clock Control) или динамический разгон системной платы. Например, в системных платах ASUS следует выбрать для параметра AI Overclocking (AI Tuning) значение Manual.

6. С помощью утилиты CPU-Z проверьте реальные рабочие частоты процессора и памяти, чтобы убедиться в правильности ваших действий (рис. 6.3). Обязательно контролируйте рабочие температуры и напряжения. Запустите 1-2 тестовые программы и убедитесь, что нет сбоев и зависаний.

7. Если проверка разогнанного компьютера прошла без сбоев, можно его перезагрузить, повысить частоту FSB на 5 или 10 МГц, после чего снова проверить работоспособность. Продолжайте до тех пор, пока система не даст первый сбой.

8. При возникновении сбоя можно уменьшить частоту FSB, чтобы вернуть систему в стабильное состояние. Но если вы хотите узнать предельную частоту процессора, нужно повышать напряжение питания ядра с помощью параметра CPU VCore Voltage или CPU Voltage. Изменять напряжение питания нужно плавно и не более чем на 0,1-0,2 В (до 1,4-1,5 В). Тестируя компьютер с увеличенным напряжением питания процессора, следует обязательно обратить внимание на его температуру, которая не должна быть больше 60 °С. Окончательная цель этого этапа разгона – найти максимальную частоту FSB, при которой процессор может работать длительное время без сбоев и перегрева.

9. Подберите оптимальные параметры оперативной памяти. На шаге 4 мы уменьшили ее частоту, однако с увеличением частоты FSB частота памяти также увеличилась. Фактическое значение частоты памяти можно рассчитать вручную или определить с помощью утилит EVEREST, CPU-Z и др. Для ускорения памяти можно повышать ее частоту или уменьшать тайминги, а для проверки стабильности – использовать специальные тесты памяти: утилиту MemTest или встроенные тесты памяти в диагностических программах EVEREST и подобных.


Рис. 6.3. Контроль реальной частоты процессора в программе CPU-Z


10. После того как процессор разогнан и подобраны оптимальные параметры шины памяти, следует всесторонне протестировать скорость разогнанного компьютера и стабильность его работы.

Разгон процессоров Intel Core i3/5/7

До 2010 года самыми популярными являлись процессоры Intel Core 2, но к этому времени конкурирующие модели от AMD практически догнали их по производительности и к тому же продавались по более низким ценам. Однако еще в конце 2008 года Intel разработала процессоры Core i7 с совершенно новой архитектурой, но они выпускались небольшими партиями и стоили очень дорого. И только в 2010 году ожидается приход чипов с новой архитектурой в массы. Компания планирует выпускать несколько моделей для всех сегментов рынка: Core i7 – для производительных систем, Core i5 – для среднего сегмента рынка и Core i3 – для систем начального уровня.

Порядок разгона процессоров Intel Core i3/5/7 не очень отличается от разгона чипов Core 2, но для получения хороших результатов следует учитывать основные особенности новой архитектуры: перенос контроллера памяти DDR3 непосредственно в процессор и замену шины FSB новой последовательной шиной QPI. Сходные принципы уже давно используются в процессорах AMD, правда, компания Intel выполнила все на очень высоком уровне, и на момент выхода книги производительность процессоров Core i7 является недосягаемой для конкурентов.

Для установки рабочих частот процессора, оперативной памяти, модулей памяти, контроллера DDR3, кэш-памяти и шины QPI используется принцип умножения базовой частоты 133 МГц (BCLK) на определенные коэффициенты. Поэтому основной метод разгона процессоров – повышение базовой частоты, правда, при этом будут автоматически повышаться частоты всех других компонентов. Как и в случае с разгоном Core 2, необходимо предварительно понизить коэффициент умножения оперативной памяти, чтобы после увеличения базовой частоты частота памяти не стала слишком высокой. Корректива множителей для шины QPI и контроллера DDR3 может понадобиться при экстремальном разгоне, а в большинстве случаев эти компоненты будут нормально работать при повышенных частотах.

Исходя из сказанного выше, примерный порядок разгона системы на базе Core i3/5/7 может быть таким.

1. Установите оптимальные настройки BIOS для вашей системы. Отключите параметр Spread Spectrum, технологии энергосбережения Intel SpeedStep и С1Е Support, а также технологию Intel Turbo Boost.

2. Установите минимальный коэффициент умножения для оперативной памяти с помощью параметра System Memory Multiplier или аналогичного. В большинстве плат минимально возможным является множитель 6, который соответствует частоте 800 МГц в штатном режиме. В платах ASUS для этих целей используется параметр DRAM Frequency, для которого следует установить значение DDR3-800 MHz.

3. После подготовительных действий можно приступить к повышению базовой частоты с помощью параметра BCLK Frequency или аналогичного. Начать можно с частоты 160-170 МГц, а затем ступенчато повышать ее на 5-10 МГц. Как показывает статистика, для большинства процессоров удается поднять базовую частоту до 180-220 МГц.

4. При возникновении первого сбоя можно немного уменьшить базовую частоту, чтобы вернуть систему в рабочее состояние, и тщательно протестировать ее на стабильность. Если же вы хотите выжать из процессора максимум возможного, можете попробовать повысить напряжение питания на 0,1-0,3 В (до 1,4-1,5 В), но при этом следует позаботиться о более эффективном охлаждении. В некоторых случаях увеличить разгонный потенциал системы можно с помощью поднятия напряжения шины QPI и кэш-памяти L3 (Uncore), оперативной памяти или системы фазовой автоподстройки частоты процессора (CPU PLL).

5. После определения частоты, на которой процессор может работать длительное время без сбоев и перегрева, можно подобрать оптимальные параметры оперативной памяти и других компонентов.

Разгон процессоров AMD Athlon/Phenom

В середине 2000-х годов компания AMD выпускала неплохие для того времени процессоры семейства Athlon 64, но вышедшие в 2006 году процессоры Intel Core 2 превзошли их по всем параметрам. Выпущенным в 2008 году процессорам Phenom так и не удалось догнать по производительности Core 2, и лишь в 2009 году процессоры Phenom II смогли на равных соперничать с ними. Однако к этому времени у Intel уже был готов Core i7, а чипы от AMD применялись в системах начального и среднего уровня.

Разгонный потенциал процессоров AMD немного ниже, чем у Intel Core, и зависит от модели процессора. Контроллер памяти находится непосредственно в процессоре, а связь с чипсетом осуществляется по специальной шине HyperTransport (НТ). Рабочая частота процессора, памяти и шины НТ определяется путем умножения базовой частоты (200 МГц) на определенные коэффициенты.

Для разгона процессоров AMD в основном используется метод повышения базовой частоты процессора, при этом автоматически будет повышаться частота шины HyperTransport и частота шины памяти, поэтому их нужно будет уменьшить перед началом разгона. Также в ассортименте компании имеются модели с разблокированным множителем (серия Black Edition), и разгон таких чипов можно выполнить, увеличив коэффициент умножения; при этом нет необходимости корректировать параметры оперативной памяти и шины НТ.

Разгонять процессоры Athlon, Phenom или Sempron можно в такой последовательности.

1. Установите оптимальные для вашей системы настройки BIOS. Отключите технологии Cool"n"Quiet и Spread Spectrum.

2. Уменьшите частоту оперативной памяти. Для этого, возможно, сначала придется отменить установку параметров памяти с помощью SPD (параметр Memory Timing by SPD или аналогичный), а затем указать минимально возможную частоту в параметре Memory Frequency for или подобном (рис. 6.4).

3. Уменьшите частоту шины HyperTransport с помощью параметра НТ Frequency или аналогичного (рис. 6.5) на 1-2 ступени. Например, для процессоров Athlon 64 номинальная частота НТ составляет 1000 МГц (множитель 5) и вы можете понизить ее до 600-800 МГц (множитель 3 или 4). Если в вашей системе имеется параметр для установки частоты встроенного в процессор контроллера памяти, например CPU/NB Frequency, его значение также рекомендуется уменьшить.

4. Установите фиксированные значения частот для шин PCI (33 МГц), PCI Express (100-110 МГц) и AGP (66 МГц).

5. После всех перечисленных действий можно приступать к самому разгону. Для начала можно поднять базовую частоту на 10-20 % (например, с 200 до 240 МГц), после чего попробовать загрузить операционную систему и проверить ее работу. Параметр для установки может называться CPU FSB Clock, CPU Overclock in MHz или аналогично.


Рис. 6.4. Установка частоты оперативной памяти


Рис. 6.5. Уменьшение рабочей частоты шины HyperTransport


6. С помощью утилиты CPU-Z проверьте реальные рабочие частоты процессора и памяти. Если проверка разогнанного компьютера прошла без сбоев, можно продолжать повышать базовую частоту на 5-10 МГц.

7. При возникновении сбоя можно уменьшить базовую частоту, чтобы вернуть систему в стабильное состояние, или продолжить разгон с повышением напряжения питания ядра (рис. 6.6). Изменять напряжение питания нужно плавно и не более чем на 0,2-0,3 В. Тестируя компьютер с увеличенным напряжением питания процессора, обратите внимание на температуру процессора, которая не должна быть выше 60 °С.


Рис. 6.6. Увеличение напряжения питания ядра процессора


8. Завершив разгон процессора, установите оптимальную частоту шины НТ, оперативной памяти и ее контроллера, выполните тестирование скорости и стабильности разогнанного компьютера. Для снижения нагрева процессора включите технологию Cool"n"Quiet и проверьте стабильность работы в этом режиме.

Разблокирование ядер в процессорах Phenom ll/Athlon II

В семействе процессоров AMD Phenom II, которые вышли в 2009 году, имеются различные модели с двумя, тремя и четырьмя ядрами. Двух-и трехъядерные модели компания AMD выпускала путем отключения одного или двух ядер в четырехъядерном процессоре. Объяснялось это соображениями экономии: если в одном из ядер четырехъядерного процессора обнаруживался дефект, его не выбрасывали, а отключали дефектное ядро и продавали как трехъядерный.

Как выяснилось позже, заблокированное ядро можно включить с помощью BIOS, а некоторые из процессоров, подвергшихся разблокировке, могут нормально работать со всеми четырьмя ядрами. Этот феномен можно объяснить тем, что со временем брака при производстве четырехъядерных процессоров стало меньше, а поскольку на рынке существовал спрос на двух– и трехъядерные модели, производители могли принудительно отключать и вполне рабочие ядра.

На момент выхода книги было известно об успешных разблокировках большинства моделей этого семейства: Phenom II Х3 серии 7хх, Phenom II Х2 серии 5хх, Athlon II ХЗ серии 7хх, Athlon II ХЗ серии 4хх и некоторых других. В четырехъядерных моделях Phenom II Х4 8хх и Athlon II Х4 6хх есть вероятность разблокировки кэш-памяти L3, а в одноядерном Sempron 140 – второго ядра. Вероятность разблокировки зависит не только от модели, но и от партии, в которой выпущен процессор. Встречались партии, в которых можно было разблокировать больше половины процессоров, а в некоторых партиях разблокировке поддавались лишь редкие экземпляры.

Для разблокировки необходимо, чтобы в BIOS системной платы присутствовала поддержка технологии Advanced Clock Calibration (АСС). Эту технологию поддерживают чипсеты AMD с южным мостом SB750 или SB710, а также некоторые чипсеты компании NVIDIA, например GeForce 8200, GeForce 8300, nForce 720D, nForce 980.

Сама процедура разблокировки несложная, вам достаточно установить значение Auto для параметра Advanced Clock Calibration или аналогичного. В некоторых платах от MSI следует также включить параметр Unlock CPU Core. В случае неудачи вы можете попробовать настроить АСС вручную, экспериментально подобрав значение параметра Value. Иногда после включения АСС система может вообще не загрузиться, и вам придется обнулять содержимое CMOS с помощью перемычки (см. гл. 5). Если никакими методами вам не удалось разблокировать процессор, отключите АСС, и процессор будет работать в штатном режиме.

Проверить параметры разблокированного процессора можно с помощью диагностических утилит EVEREST или CPU-Z, но чтобы убедиться в положительном результате окончательно, следует провести всестороннее тестирование компьютера. Разблокировка выполняется на материнской плате и не изменяет физического состояния процессора. Вы можете в любой момент отказаться от разблокировки, отключив АСС, а при установке разблокированного процессора на другую плату он снова окажется заблокированным.

«– В этом поезде никто ничего не знает!
– А чего еще ждать от этих бездельников иностранцев?»

Агата Кристи, «Восточный Экспресс».

Итак, господа, пришло время сменить шину, в течение 10 лет бывшую общепринятым индустриальным стандартом. PCI, первая версия стандарта которой была разработана еще в 1991 году, прожила долгую и счастливую жизнь, в различных своих ипостасях являясь основой для малых и крупных серверов, промышленных компьютеров, ноутбуков и графических решений (напомним, что AGP также ведет свою родословную от PCI и является специализированным и расширенным вариантом последней). Но, прежде чем рассказывать о новинке, подобьем исторических бабок, вспомнив как происходило развитие PCI. Ибо, не однократно было замечено, что, говоря о будущих перспективах, всегда полезно найти исторические аналогии: История PCI

В 1991 году Intel предлагает базовую версию (1.0) проекта стандарта шины PCI (Peripheral Component Interconnect — Соединение Периферийных Компонент). PCI призвана заменить ISA (а позже и ее не очень удачную и дорогую серверную расширенную модификацию EISA). Кроме значительно возросшей пропускной способности, новую шину характеризует возможность динамической конфигурации выделяемых присоединенным устройствам ресурсов (прерываний).

В 1993 году PCI Special Interest Group (PCISIG, Специальная Группа Интересов PCI, — организация, взявшая на себя заботу о разработке и принятии различных стандартов имеющих отношение к PCI) публикует обновленную 2.0 ревизию стандарта ставшую основой для широкой экспансии PCI (и различных ее модификаций) в индустрии информационных технологий. В деятельности PCISIG принимают участие многие известные компании, включая родоначальника PCI — корпорацию Intel, подарившую индустрии множество долгоиграющих, исторически успешных стандартов. Итак, базовая версия PCI (IEEE P1386.1):

  • Тактовая частота шины 33 МГц, используется синхронная передача данных;
  • Пиковая пропускная способность 133 МБ в секунду;
  • Параллельная шина данных шириною 32-бита;
  • Адресное пространство 32-бита (4 ГБ);
  • Сигнальный уровень 3,3 или 5 вольт.

Позже появляются следующие ключевые модификации шины:

  • PCI 2.2 — допускается 64-бит ширина шины и/или тактовая частота 66 МГц, т.е. пиковая пропускная способность до 533 МБ/сек.;
  • PCI-X, 64-бит версия PCI 2.2 с увеличенной до 133 МГц частотой (пиковая пропускная полоса 1066 МБ/сек.);
  • PCI-X 266 (PCI-X DDR), DDR версия PCI-X (эффективная частота 266 МГц, реальная 133 МГц с передачей по обоим фронтам тактового сигнала, пиковая пропускная полоса 2.1 ГБ/сек);
  • PCI-X 533 (PCI-X QDR), QDR версия PCI-X (эффективная частота 533 МГц, пиковая пропускная полоса 4,3 ГБ/сек.);
  • Mini PCI — PCI с разъемом в стиле SO-DIMM, применяется преимущественно для миниатюрных сетевых, модемных и прочих карточек в ноутбуках;
  • Compact PCI — стандарт на форм фактор (модули вставляются с торца в шкаф с общей шиной на задней плоскости) и разъем, предназначенные в первую очередь для промышленных компьютеров и других критических применений;
  • Accelerated Graphics Port (AGP) — высокоскоростная версия PCI оптимизированная для графических ускорителей. Отсутствует арбитраж шины (т.е. допустимо только одно устройство, за исключением последней, 3.0 версии стандарта AGP, где устройств и слотов может быть два). Передачи в сторону ускорителя оптимизированы, есть набор специальных дополнительных возможностей специфических для графики. Впервые данная шина появилась вместе с первыми системными наборами для процессора Pentium II. Существует три базовых версии протокола AGP, дополнительная спецификация на питание (AGP Pro) и 4 скорости передачи данных — от 1х (266 МБ/сек) до 8х (2ГБ/сек), в том числе допустим сигнальные уровни 1,5, 1,0 и 0,8 вольт.

Упомянем также CARDBUS — 32 разрядную версию шины для PCMCIA карт, с горячим подключением и некоторыми дополнительными возможностями, тем не менее, имеющую много общего с базовой версией PCI.

Как мы видим, основное развитие шины идет по следующим направлениям:

  1. Создание специализированных модификаций (AGP);
  2. Создание специализированных форм факторов (Mini PCI, Compact PCI, CARDBUS);
  3. Увеличение разрядности;
  4. Увеличение тактовой частоты и применение DDR/QDR схем передачи данных.

Все это вполне логично, учитывая огромный срок жизни подобного всеобщего стандарта. Причем, пункты 1 и 2 не ставят своей целью сохранение совместимости с базовыми PCI картами, а вот пункты 3 и 4 выполняются за счет увеличения оригинального PCI разъема, и допускают установку обычных 32х разрядных PCI карт. Справедливости ради, отметим, что в ходе эволюции шины случались и сознательные потери совместимости со старыми картами, даже для базового варианта разъема PCI — например, в спецификации 2.3 исчезло упоминание о поддержке 5 вольт сигнального уровня и питающего напряжения. В результате, серверные платы снабженные этой модификацией шины могут пострадать при установке в них старых, пятивольтовых карт, хотя, с точки зрения геометрии разъема, эти карты к ним подходят.

Однако, как и любая другая технология (например, архитектуры процессорных ядер), шинная технология имеет свои разумные границы масштабирования, при приближении к которым увеличение пропускной полосы дается все большей и большей ценою. Возросшая тактовая частота требует более дорогостоящей разводки и накладывает существенные ограничения на длину сигнальных линий, увеличение разрядности или использование DDR решений также влечет за собою множество проблем, которые в итоге банально выливаются в рост стоимости. И если в серверном сегменте, решения подобные PCI-X 266/533 еще будут некоторое время экономически оправданными, то в потребительских PC мы их не увидели, и не увидим. Почему? Очевидно, что в идеале пропускная способность шин должна расти синхронно с ростом производительности процессора, при этом цена реализации должна не только сохраняться прежней, но и в идеале снижаться. На данный момент это возможно только при использовании новой шинной технологии. О них мы сегодня и поговорим: Эпоха последовательных шин

Итак, ни для кого не секрет что в наше время, идеальный внешний интерфейс, так или иначе, является последовательным. Прошли времена многожильных центрониксов, и толстенных (обухом не перешибешь) SCSI шлангов — фактически, наследия еще до PC-шных времен. Переход происходил медленно, но верно: сначала клавиатура и мышь, затем модем, затем, через годы и годы — сканеры и принтеры, видеокамеры, цифровые фотоаппараты. USB, IEE1394, USB 2. На данный момент, вся потребительская внешняя периферия перебралась на последовательные соединения. Не за горами и беспроводные решения. Механизм очевиден — в наше время выгоднее заложить максимум функциональности в чип (горячее подключение, последовательное кодирование, передача и прием, декодирование данных, протоколы маршрутизации и защиты от ошибок и пр. необходимые для выжимания необходимой топологической гибкости и существенной полосы пропускания из пары проводов вещи), нежели иметь дело с избыточными объемами контактов, шлангами с сотней проводов внутри, недешевыми пайкой, экранированием, разводкой и медью. В наше время последовательные шины становятся более удобны не только с точки зрения конечного потребителя, но и с точки зрения банальной выгоды — пропускная полоса умножить на расстояние делить на баксы. Разумеется, со временем эта тенденция не могла не распространиться на внутренности компьютера — мы уже во всю наблюдаем первый плод подобного подхода — Serial ATA. Более того, можно экстраполировать эту тенденцию не только на системные шины (основная тема данной статьи) но и на шину памяти (справедливо отметить, что подобный пример уже был — Rambus, но индустрия справедливо сочла его преждевременным) и даже на процессорную шину (потенциально более удачный пример — HT). Кто знает, сколько контактов будет у Pentium Х — возможно менее сотни, при условии, что половина из них — земля и питание. Время притормозить и четко сформулировать преимущества последовательных шин и интерфейсов:

  1. Выгодный перенос все большей части практической реализации шины на кремний, что облегчает отладку, повышает гибкость и сокращает время разработки;
  2. Перспектива органично использовать в будущем иные носители сигнала, например оптические;
  3. Экономия пространства (не бьющая по карману миниатюризация) и снижение сложности монтажа;
  4. Проще реализовывать горячие подключения и динамическую конфигурацию в любом смысле;
  5. Возможность выделять гарантированные и изохронные каналы;
  6. Переход от разделяемых шин с арбитражем и непредсказуемыми прерываниями, неудобными для надежных/критических систем к более предсказуемым соединениям точка-точка;
  7. Лучшая с точки зрения затрат и более гибкая с точки зрения топологии масштабируемость;
  8. Этого еще не достаточно??? ;-).

В будущем же следует ожидать перехода на беспроводные шины, технологии подобные UWB (Ultra Wide Band) однако, это дело не ближайшего года и даже не пяти лет.

А теперь, самое время обсудить все преимущества на конкретном примере — новой стандартной системной шине PCI Express, массовое распространение которой на сегмент PC и средних/малых серверов ожидается уже в середине следующего года. PCI Express — только факты

PCI Express — ключевые отличия

Подробнее остановимся на ключевых отличиях PCI Express от PCI:

  1. Как уже неоднократно упоминалось — новая шина последовательна, а не параллельна. Основные преимущества — снижение стоимости, миниатюризация, лучшее масштабирование, более выгодные электрические и частотные параметры (нет необходимости синхронизировать все сигнальные линии);
  2. Спецификация разделена на целый стек протоколов, каждый уровень которого может быть усовершенствован, упрощен или заменен не сказываясь на остальных. Например — может быть использован иной носитель сигнала или может быть упразднена маршрутизация в случае выделенного канала только для одного устройства. Могут быть добавлены дополнительные контрольные возможности. Развитие такой шины будет происходить гораздо менее болезненно — увеличение пропускной способности не потребует изменять контрольный протокол и наоборот. Быстро и удобно разрабатывать адаптированные варианты специального назначения;
  3. В изначальной спецификации заложены возможности горячей замены карт;
  4. В изначальной спецификации заложены возможности создания виртуальных каналов, гарантирования пропускной полосы и времени отклика, сбора статистики QoS (Quality of Service — Качество Обслуживания);
  5. В изначальной спецификации заложены возможности контроля целостности передаваемых данных (CRC);
  6. В изначальной спецификации заложены возможности управления питанием.

Итак, более широкие диапазоны применимости, более удобное масштабирование и адаптация, богатый набор изначально заложенных возможностей. Все так хорошо, что просто не верится. Впрочем, в отношении этой шины, даже заядлые пессимисты высказываются скорее положительно, чем отрицательно. И это не удивительно — кандидат на десятилетний трон общего стандарта для большого числа различных применений (начиная с мобильных и встраиваемых и заканчивая серверами «Энтерпрайз» класса или критическими применениями) просто обязан выглядеть безупречным со всех сторон, хотя бы на бумаге:-). Как оно будет в деле — мы скоро увидим сами. PCI Express — как это будет выглядеть

Самый простой вариант перехода на PCI-Express для стандартных по архитектуре настольных систем выглядит так:

Однако в будущем логично ожидать появление некоего разветвителя PCI Express. Тогда вполне оправданным станет и объединение северного южного мостов. Приведем примеры возможных системных топологий. Классический PC с двумя мостами:

Как уже упоминалось, предусмотрен и стандартизирован Mini PCI Express слот:

И новый слот для внешних заменяемых карт, на подобии CARDBUS, на который вынесена не только PCI Express но и USB 2.0:

Интересно, что предусмотрено два форм фактора карт, но отличаются они не толщиной как ранее, а шириной:

Решение очень удобное — во-первых делать двухэтажный монтаж внутри карты гораздо дороже и неудобнее нежели сделать карту с платой большей площади внутри, во-вторых, карта полной ширины получит в итоге вдвое большую пропускную полосу, т.е. второй разъем не будет простаивать без дела. С электрической или протокольной точки зрения шина NewCard не несет ничего нового, все необходимые для горячей замены или энергосбережения функции уже заложены в базовой спецификации PCI Express.PCI Express — переход

Для облегчения перехода предусмотрен механизм совместимости с программным обеспечением, написанным для PCI (драйверы устройств, OS). Кроме того, разъемы PCI Express в отличие от PCI расположены на другой стороне отведенной для карты расширения секции, т.е. могут сосуществовать на одном месте с PCI разъемами. Пользователю останется только выбирать какую карту он хочет вставить. В первую очередь появление PCI Express ожидается в начальных серверных (двупроцессорных) платформах Intel в первой половине 2004 года, затем в настольных платформах класса «Энтузиаст» и рабочих станциях (в том же году). Насколько быстро PCI Express будет поддержана другими производителями чипсетов не ясно, однако и NVIDIA и SIS отвечают на вопрос утвердительно, хотя и не называют конкретные сроки. Уже давно запланированы и готовятся к выходу в первой половине 2004 года графические решения (ускорители) от NVIDIA и ATI, снабженные встроенной поддержкой PCI Express х16. Множество других производителей являются активными участниками разработки и тестирования PCI Express и также намерены представить свои продукты до конца 2004 года.

Посмотрим! Есть подозрение, что ребеночек вышел удачный.
В добрый путь, PCI Express: отправление 2004, прибытие 2014.

При помощи утилит, которые вы найдете на нашем диске, и этого руководства можно разогнать компьютер прямо из Windows - прирост производительности гарантирован!


В состоянии покоя OCCT показывает, что AI NOS разгоняет компьютер на 2,96%. В PCMark Vantage компьютер набрал 3544 балла, что на 8% больше, чем было до разгона Хоть в это и верится с трудом, но даже новейший процессор Core i7 от Intel зависит от микросхемы BIOS (Basic Input-Output System - базовая система ввода-вывода), появившейся еще на заре развития х86-совместимых компьютеров. Основной функцией BIOS является инициализация подсоединенных к материнской плате устройств после включения питания компьютера. BIOS проверяет их работоспособность, задает некоторые низкоуровневые параметры работы (частоту системной шины, различные напряжения и т. д.) и и уже после этого передает управление операционной системе.

Разгон компьютера из BIOS Setup - самый надежный и эффективный, однако разобраться во всех настройках современной BIOS под силу далеко не каждому пользователю компьютера. Мы расскажем, как сделать это из операционной системы Windows и получить дополнительные 20% производительности. Все необходимые для этого программы вы найдете на прилагаемом к журналу DVd или в разделе Download на сайте.

ПОДГОТОВКА: собираем информацию о материнской плате

Прежде чем перейти к активным действиям, необходимо уточнить характеристики материнской платы, процессора, оперативной памяти и текущие настройки этих компонентов. Это нужно сделать для того, чтобы иметь представление о предельной рабочей частоте и напряжении, которое можно подать на микросхемы, их термопакете и других важных параметрах. В противном случае в результате необдуманных действий вы рискуете повредить дорогостоящие компоненты. Именно поэтому производители материнских плат записывают на прилагаемые к своим продуктам оптические диски не только драйверы, но еще и различные приложения, которые могут снабдить пользователя всей необходимой информацией.

Если вы не можете отыскать ваш диск с драйверами и утилитами или на нем отсутствуют подобные приложения, то используйте как альтернативу программу CPU-Z, которая есть на нашем DVD. После ее установки и запуска вы сможете узнать модель установленного процессора и его тактовую частоту, а также такие важные для разгона параметры, как множитель (multiplier) и частота системной шины (related FSB).

Перейдите на закладку «Mainboard», чтобы определить версию BIOS и модель установленного на материнской плате набора микросхем. Закладки «Memory» и «SPD» расскажут все, что необходимо знать о модулях оперативной памяти. Также мы рекомендуем сделать скриншоты всех четырех закладок и распечатать их - таким образом вы сможете в любой момент просмотреть эти данные.

Резервируем данные и контролируем температуру

Разгон может привести к повреждению комплектующих и потере данных. Ниже мы расскажем, что необходимо сделать, чтобы оградить себя от этих рисков.

Резервирование данных. Если компьютер не загружается после разгона, чаще всего помогает сброс настроек BIOS. Для этого необходимо найти на плате специальную перемычку, которая позволяет сбросить настройки при помощи джампера, или извлечь на несколько минут питающую BIOS батарейку. Однако в некоторых случаях возникает опасность потери данных, поэтому перед разгоном следует сохранить всю важную информацию - это можно сделать как вручную, так и при помощи специальных утилит - например Norton Ghost или Nero BackltUp.

Контроль температуры. Существует еще одна опасность - перегрев. Поэтому, прежде чем разгонять компьютер, необходимо установить одну или несколько программ мониторинга. Если компоненты ПК перегреваются, срок их службы сокращается. Кроме того, в случае сильного теплового воздействия они могут выйти из строя. В BIOS Setup, зайти в который можно, нажав после включения компьютера клавишу «Del», есть раздел, позволяющий посмотреть температуру процессора и скорость вращения вентиляторов. Обычно он называется «Hardware Monitor», «PC Health Status» и т. п.

Чтобы проверить температуру основных компонентов компьютера под нагрузкой, мы рекомендуем воспользоваться утилитой SpeedFan, которую можно найти на нашем DVD.

Установите ее и переключите на русский язык в меню «Configure | Options | Language | Russian». В разделе «Показатели» отображаются данные о скорости вращения кулеров и температуре основных устройств, а также значения различных напряжений. Количество отображаемых данных зависит от модели материнской платы.

Если вы не увидели этой информации, значит установленная плата программой не поддерживается.

Для контроля состояния жесткого диска в SpeedFan предусмотрена закладка «S.M.A.R.T.». Правда, на нашем тестовом компьютере с операционной системой Windows Vista Ultimate она не работала. Если у вас происходит то же самое, установите аналогичную программу HDDIife с нашего DVD. В Vista можно встроить эту программу в боковую панель, однако там она будет отображать не всю информацию.

Измерение производительности. Вам понадобится установить еще одну программу, которая измеряет общую производительность компьютера. Для Windows XP воспользуйтесь тестовым пакетом РСМагк 05, а для Vista - РСМагк Vantage. Эти программы можно найти в Интернете на сайте разработчика по адресу: www.futuremark.com.

После запуска нужно будет зарегистрировать бесплатную копию посредством электронной почты.

Установите РСМагк, запустите его и нажмите кнопку «Run Benchmark». Программа начнет выполнение последовательности тестов и измерит скорость работы компьютера при решении различных задач, которые выполняет обычный пользователь компьютера, таких как воспроизведение HD-видео, обработка фотографий, игры и посещение сайтов в Интернете. Во время этой процедуры не трогайте мышку и клавиатуру, так как это может привести к неверному результату. По завершении тестирования на экран будет выведено число, характеризующее общую производительность ПК. Чем оно больше, тем быстрее работает компьютер. Его можно сравнить с тем, которое получится после разгона.

ОБНОВЛЕНИЕ: новые версии драйверов и BIOS почти всегда лучше старых

После выполнения описанных выше действий необходимо сделать еще один подготовительный шаг - обновить BIOS и драйверы материнской платы и видеоплаты. Не стоит этим пренебрегать, так как новая прошивка и драйверы могут сотворить настоящее чудо.

Производители материнских плат предлагают различные средства для обновления BIOS. На нашем тестовом компьютере с материнской платой ASUS мы использовали фирменную утилиту ASUS Update Tool, которая автоматически находит и скачивает новую версию BIOS с сайта производителя, а затем обновляет ее прямо из Windows. Перед перепрошивкой не забудьте сделать резервную копию старой BIOS.

Совет. Если производитель материнской платы не предлагает подобных утилит, то стоит воспользоваться UniFlash и Dr. DOS BIOS Boot Disk, которые можно скачать с сайта www.wimsbios.com/biosutil.jsp.

Для сбора сведений о других установленных устройствах воспользуйтесь программой Everest Home Edition, которую вы найдете на нашем сайте по адресу: http://download.chip.eu/ru.

Эта утилита автоматически считает информацию обо всех компонентах системы. После этого выберите в меню пункт «Отчет Мастер отчетов», задайте профиль «Только суммарные данные о системе» и выведите его в файл формата HTML.

Преимущества такого отчета заключаются в том, что напрямую из него вы сможете попасть на сайты производителей, используя встроенные ссылки. Проверьте, есть ли на сайте производителей новые версии драйверов для ваших устройств и установите их. После этого снова измерьте скорость работы компьютера с помощью тестового пакета PCMark. На нашем компьютере итоговый результат возрос с 3260 до 3566 баллов. Таким образом, прирост производительности после обновления драйверов и BIOS составил примерно 9%.

НА АВТОМАТЕ: разгон с помощью специальных утилит

Теперь пришло время приступить непосредственно к разгону.

Почти все производители материнских плат предлагают утилиты и специальные разделы в BIOS Setup, при помощи которых можно разогнать компьютер автоматически, без ручного выставления всех параметров. CHIP расскажет, как это делается, на примере материнской платы ASUS P5B. В других случаях последовательность действий почти такая же.

Если вы решили разогнать компьютер из Windows, вам понадобится специальная утилита от производителя материнской платы, такая как ОС Guru (Abit), Easy Tune (Gigabyte) или, как в нашем случае, AI Suite (ASUS).

Чтобы позволить AI Suite поднять тактовую частоту процессора автоматически, зайдите в раздел «AI NOS». Выберите в «NOS Mode» опцию «Manual» и выставите «Sensitivity» на «Auto». После этого утилита сможет автоматически повышать тактовую частоту процессора при увеличении нагрузки на него. Чтобы изменения вступили в силу, необходимо перезагрузить компьютер. Далее следует зайти в BIOS Setup и выставить в разделе «Advanced | JumperFree Configuration» опцию «Ai Tuning» на «AI NOS» и «NOS Mode» на «Auto». Затем надо сохранить настройки и загрузить Windows.

Теперь проверьте, как поведет себя компьютер, когда утилита ASUS будет разгонять процессор. Для этого установите утилиту ОССТ, которую можно скачать по адресу: www.ocbase.com/perestroika_en.

После запуска выберите опции «Вручную (непрерывно)» и «Mix». Нажмите кнопку «On» и протестируйте компьютер на отказоустойчивость в течение 15 минут. Если во время теста не будет выявлено никаких ошибок, разгон прошел удачно.

Совет. Если операционная система не загружается после разгона, то можно откатить сделанные изменения в BIOS в разделе «Advanced | JumperFree Configuration | Ai Tuning».

РАЗГОН БЕЗ ЭКОНОМИИ: отключаем энергосберегающие технологии

Если компьютер выдержал тест на отказоустойчивость, нужно измерить, насколько возросла его производительность после всех произведенных манипуляций. В нашем случае результат получился неплохим. Однако мы пока не собираемся останавливаться на достигнутом, поскольку набранных в PCMark Vantage 3780 баллов нам все еще недостаточно. Если вас также не устроит достигнутый результат, поможет отключение некоторых параметров в BIOS, которые могут отрицательно повлиять на производительность.

Сначала нужно зайти в раздел «Advanced | CPU Configuration» и отключить параметр «С1Е Support». Эта функция уменьшает потребление процессором электроэнергии, снижая подаваемое на него напряжение (VCore) и тем самым ограничивая максимальную частоту его работы.

Найдите в «Chipset | Northbridge Configuration» пункт «PEG Link Mode» и переключите его значение на «Auto». При других значениях этой настройки она поднимает тактовую частоту шины PCi Express на величину до 15%. Двойной разгон может привести к нестабильной работе компьютера.

После этих манипуляций результат в PCMark Vantage возрос до 3814 баллов. Максимально возможного разгона тестового ПК (20%, 3912 баллов) с помощью AI NOS мы добиться не смогли, зато система работала стабильно.

При таком небольшом увеличении тактовой частоты не приходится бороться с перегревом. Далее мы расскажем, как увеличить производительность еще больше, но это связано с определенным риском.

ТОЛЬКО ДЛЯ ПРОФЕССИОНАЛОВ: на пределе возможностей

С риском и опасностью выхода комплектующих из строя сопряжен реальный подъем производительности - от 30% и выше. Однако имеет ли подобный экстремальный разгон смысл, решать только вам. В любом случае он приводит к уменьшению срока службы компонентов и инвестициям в высокоэффективное воздушное или водяное охлаждение. Так или иначе, погоня за каждым процентом производительности заставляет использовать даже самые дальние уголки BIOS.

При ручном разгоне чаще всего повышают тактовую частоту системной шины, за счет чего возрастает производительность всех компонентов системы. Мы опробовали этот метод. Однако прежде чем это сделаете вы, нужно внести ряд важных изменений в BIOS.

Подготовка системы. Установите в разделе «Advanced | JumperFree Configuration» значение пункта «Ai Tuning» на «Manual». Вручную задайте частоту шин PCI и PCI Express. Установите значение параметров «PCI Express Frequency» и «PCI Clock Synchronization Mode» равными 100 и 33,33 соответственно. Также нужно установить частоту работы памяти. Выберите в поле «DRAM Frequency» минимальное значение (на нашей материнской плате ASUS Р5В - «DDR2-533 Mhz»), После повышения тактовой частоты системной шины его нужно будет изменить на исходное.

Также слегка поднимите напряжение, подаваемое на микросхемы памяти. Номинальное напряжение наших модулей памяти составляет 1,8 в (стандарт для DDR2), мы увеличили его при помощи пункта «Memory Voltage» до 1,9 В. Перейдите в раздел «Advanced | Chipset | Northbridge Configuration». В подразделе «Configure DRAm Timing by SPD» выставьте значение «Disabled» и измените следующие значения: CAS Latency: 5, RAS# to CAS# Delay: 5, RAS# Precharge: 5, RAS# Activate: 15. Остальные настройки оставьте без изменений либо задайте «Auto».

Теперь самое главное: так как процессор будет работать на повышенной частоте, ему понадобится более высокое питающее напряжение.

Но какое? Если перестараться, процессор может перегреться или даже сгореть.

При плохом охлаждении срок его службы значительно сократится. Если же выставить слишком низкое значение, то компьютер будет работать нестабильно.

Поэтому мы рекомендуем поступить следующим образом: узнайте номинальное напряжение вашей модели процессора (при помощи CPU-Z или в Интернете), зайдите на сайт с базой данных по разгону процессоров (например, www.overclockers.ru) и посмотрите статистику разгона этого устройства. Учтите, что каждый отдельный экземпляр процессора по-своему уникален, поэтому не стоит сразу выставлять найденные в Интернете значения. Поднимайте напряжение постепенно. Для нашего тестового двухъядерного CPU (Core 2 Duo E6600) опасным можно считать напряжение, превышающее 1,45 В, особенно при использовании обычного охлаждения.

Разгон компьютера. Установите в BIOS в разделе «Advanced | JumperFree Configuration | FSB Frequency» значение, которое будет примерно на 20 МГц выше номинального. Проведите после этого тест на отказоустойчивость при помощи утилиты ОССТ в Windows. Следите при этом за температурой процессора. В Windows это можно сделать с помощью программ AI Suite, SpeedFan или ОССТ. Температура процессора при этом не должна превышать 65–70 °С. Более высокие значения опасны.

Если система работает стабильно, поднимите «FSB Frequency» еще немного. В случае возникновения проблем снижайте значение шагами по 10 МГц, пока Windows не будет работать без ошибок.

Оптимизация работы памяти. Когда вы определите оптимальный уровень тактовой частоты, на которой система работает стабильно и не перегревается, измените в разделе «Advanced | Chipset North Bridge Configuration» параметры для модулей памяти. Уменьшите значение «CAS Fatency» до «3» и попробуйте запустить Windows. Если операционная система не загрузится, поменяйте его на «4». Также нужно изменить «RAS to CAS Delay» и «RAS Precharge». Для «RAS Activate to Precharge» укажите «10». Основной принцип: чем ниже значение этих параметров, называемых таймингами или задержками памяти, тем быстрее она работает. Однако не все модули памяти могут работать с низкими задержками. Чтобы действовать наверняка, можно раскрутить системный блок и изучить микросхемы памяти - обычно на них нанесен стикер, на котором указаны значения номинального напряжения и задержек.

Результат.

Нам удалось вручную поднять тактовую частоту процессора с 2,4 до 3,058 ГГц. Это означает увеличение производительности на 27% или до 3983 баллов в пакете PCMark Vantage. Достичь большего без замены системы охлаждения невозможно. После такого разгона некоторые игры стали работать ощутимо быстрее.

Разгон видеоплаты

Видеоплата оснащена BIOS, памятью и процессором. CHIP поможет увеличить производительность видеоадаптера на примере графической платы с чипом NVIDIA.

На платах с чипами AMD это делается аналогичным образом.

Подготовка инструментов. Для разгона видеоплаты посредствам редактирования BIOS понадобятся специальные утилиты - NiBiTor для плат NVIDIA или ATI BIOS Editor и RaBiT для плат AMD. Кроме того, необходим тестовый пакет для измерения производительности: 3DMark 0б для Windows XP или 3DMark Vantage для Vista. Установите программу для измерения производительности и сделайте контрольные замеры. Как и в случае с материнской платой, они станут для вас ориентирами. Использованная нами NVIDIA GeForce 8800 GTS до разгона набрала 8760 баллов.

Сохраняем BIOS видеоплаты. Если вы являетесь обладателем видеоплаты на основе графического процессора NVIDIA, установите программу NiBiTor, которую можно найти на нашем DVD.

Зайдите в раздел «Tools | Read BIOS | Select Device» и считайте BIOs графической платы. Теперь используйте «Tools | Read BIOS | Read into file», сохраните ROM-файл на жесткий диск и, наконец, с помощью команды «File | Open BIOS» откройте сохраненный вами файл в NiBiTor. Теперь вы должны увидеть данные графической платы.

Повышаем частоту. Повышение тактовой частоты графической платы через BIOS опаснее той же процедуры с материнской платой. Если что-то пойдет не так, вы не сможете больше попасть в программу NiBiTor и откатить изменения без РСI-видеоплаты. Как вариант мы предлагаем вам скачать уже готовый файл протестированной версии BIOS с сайта www.mvktech.net или разогнать видеоплату без редактирования BIOS при помощи утилиты RivaTuner (www.nvworld.ru). Для перепрошивки BIOS вам понадобится создать загрузочную дискету MS-DOS (www.bootdisk.com). На ней нужно сохранить модифицированную BIOS и утилиту nvflash.exe. Запустите компьютер с дискеты и замените BIOS графической платы с помощью nvflash.

Результат.

После разгона наша тестовая система набрала в 3DMark 9836 баллов, что соответствует 10-процентному приросту производительности. Тактовая частота ядра при этом возросла с 515 до 570 МГц.

На диске: утилиты для мониторинга и разгона

CPU-Z - подробно о CPU, оперативной памяти и материнской плате.

SpeedFan - мониторинг различных температур, напряжения и скорости вращения вентиляторов.

HDDIife - программа для контроля состояния жестких дисков.

AMD OverDrive - программа для разгона компьютеров с комплектующими AMD.

NiBiTor - редактор BIOS видеоплат на основе графических процессоров NVIDIA.

Весной 1991 года компания Intel завершает разработку первой макетной версии шины PCI. Перед инженерами была поставлена задача разработать недорогое и производительное решение, которое позволило бы реализовать возможности процессоров 486, Pentium и Pentium Pro. Кроме того, было необходимо учесть ошибки, допущенные VESA при проектировании шины VLB (электрическая нагрузка не позволяла подключать более 3 плат расширения), а также реализовать автоматическую настройку устройств.

В 1992 году появляется первая версия шины PCI, Intel объявляет, что стандарт шины будет открытым, и создаёт PCI Special Interest Group. Благодаря этому любой заинтересованный разработчик получает возможность создавать устройства для шины PCI без необходимости приобретения лицензии. Первая версия шины имела тактовую частоту 33 МГц, могла быть 32- или 64-битной, а устройства могли работать с сигналами в 5 В или 3,3 В. Теоретически пропускная способность шины 133 Мбайт/с, однако в реальности пропускная способность составляла около 80 Мбайт/с.

Основные характеристики:


  • частота шины - 33,33 или 66,66 МГц, передача синхронная;
  • разрядность шины - 32 или 64 бита, шина мультиплексированная (адрес и данные передаются по одним и тем же линиям);
  • пиковая пропускная способность для 32-разрядного варианта, работающего на частоте 33,33 МГц - 133 Мбайт/с;
  • адресное пространство памяти - 32 бита (4 байта);
  • адресное пространство портов ввода-вывода - 32 бита (4 байта);
  • конфигурационное адресное пространство (для одной функции) - 256 байт;
  • напряжение - 3,3 или 5 В.

Фото разъемов:

MiniPCI - 124 pin
MiniPCI Express MiniSata/mSATA - 52 pin
Apple MBA SSD, 2012
Apple SSD, 2012
Apple PCIe SSD
MXM, Graphics Card, 230 / 232 pin

MXM2 NGIFF 75 pins

KEY A PCIe x2

KEY B PCIe x4 Sata SMBus

MXM3, Graphics Card, 314 pin
PCI 5V
PCI Universal
PCI-X 5v
AGP Universal
AGP 3.3 v
AGP 3.3 v + ADS Power
PCIe x1
PCIe x16
Custom PCIe
ISA 8bit

ISA 16bit
eISA
VESA
NuBus
PDS
PDS
Apple II / GS Expasion slot
PC/ XT / AT expasion bus 8 bit
ISA (industry standard architecture) - 16 bit
eISA
MBA - Micro Bus architecture 16 bit
MBA - Micro Bus architecture с видео 16 bit
MBA - Micro Bus architecture 32 bit
MBA - Micro Bus architecture с видео 32 bit
ISA 16 + VLB (VESA)
Processor Direct Slot PDS
601 Processor Direct Slot PDS
LC Processor Direct Slot PERCH
NuBus
PCI (Peripheral Computer Interconnect) - 5v
PCI 3.3v
CNR (Communications / network Riser)
AMR (Audio / Modem Riser)
ACR (Advanced communication Riser)
PCI-X (Периферийный PCI) 3.3v
PCI-X 5v
PCI 5v + RAID option - ARO
AGP 3.3v
AGP 1.5v
AGP Universal
AGP Pro 1.5v
AGP Pro 1.5v+ADC power
PCIe (peripheral component interconnect express) x1
PCIe x4
PCIe x8
PCIe x16

PCI 2.0

Первая версия базового стандарта, получившая широкое распространение, использовались как карты, так и слоты с сигнальным напряжением только 5 вольт. Пиковая пропускная способность - 133 Мбайт/с.

PCI 2.1 - 3.0

Отличались от версии 2.0 возможностью одновременной работы нескольких шинных задатчиков (англ. bus-master, т. н. конкурентный режим), а также появлением универсальных карт расширения, способных работать как в слотах, использующих напряжение 5 вольт, так и в слотах, использующих 3,3 вольта (с частотой 33 и 66 МГц соответственно). Пиковая пропускная способность для 33 МГц - 133 Мбайт/с, а для 66 МГц - 266 Мбайт/с.

  • Версия 2.1 - работа с картами, рассчитанными на напряжение 3,3 вольта, и наличие соответствующих линий питания являлись опциональными.
  • Версия 2.2 - сделанные в соответствии с этими стандартами карты расширения имеют универсальный ключ разъёма по питанию и способны работать во многих более поздних разновидностях слотов шины PCI, а также, в некоторых случаях, и в слотах версии 2.1.
  • Версия 2.3 - несовместима с картами PCI, рассчитанными на использование 5 вольт, несмотря на продолжающееся использование 32-битных слотов с 5-вольтовым ключом. Карты расширения имеют универсальный разъём, но не способны работать в 5-вольтовых слотах ранних версий (до 2.1 включительно).
  • Версия 3.0 - завершает переход на карты PCI 3,3 вольт, карты PCI 5 вольт больше не поддерживаются.

PCI 64

Расширение базового стандарта PCI, появившееся в версии 2.1, удваивающее число линий данных, и, следовательно, пропускную способность. Слот PCI 64 является удлинённой версией обычного PCI-слота. Формально совместимость 32-битных карт с 64-битным слотами (при условии наличия общего поддерживаемого сигнального напряжения) полная, а совместимость 64-битной карты с 32-битным слотами является ограниченной (в любом случае произойдёт потеря производительности). Работает на тактовой частоте 33 МГц. Пиковая пропускная способность - 266 Мбайт/с.

  • Версия 1 - использует слот PCI 64-бита и напряжение 5 вольт.
  • Версия 2 - использует слот PCI 64-бита и напряжение 3,3 вольта.

PCI 66

Версия PCI 66 является работающим на тактовой частоте 66 МГц развитием PCI 64; использует напряжение 3,3 вольта в слоте; карты имеют универсальный, либо форм-фактор на 3,3 В. Пиковая пропускная способность - 533 Мбайт/с.

PCI 64/66

Комбинация PCI 64 и PCI 66 позволяет вчетверо увеличить скорость передачи данных по сравнению с базовым стандартом PCI; использует 64-битные 3,3-вольтовые слоты, совместимые только с универсальными, и 3,3-вольтовые 32-битные карты расширения. Карты стандарта PCI64/66 имеют либо универсальный (но имеющий ограниченную совместимость с 32-битными слотами), либо 3,3-вольтовый форм-фактор (последний вариант принципиально не совместим с 32-битными 33-мегагерцовыми слотами популярных стандартов). Пиковая пропускная способность - 533 Мбайт/с.

PCI-X

PCI-X 1.0 - расширение шины PCI64 с добавлением двух новых частот работы, 100 и 133 МГц, а также механизма раздельных транзакций для улучшения производительности при одновременной работе нескольких устройств. Как правило, обратно совместима со всеми 3.3В и универсальными PCI-картами. PCI-X карты обычно выполняются в 64-бит 3,3 В формате и имеют ограниченную обратную совместимость со слотами PCI64/66, а некоторые PCI-X карты - в универсальном формате и способны работать (хотя практической ценности это почти не имеет) в обычном PCI 2.2/2.3. В сложных случаях для того, чтобы быть полностью уверенным в работоспособности комбинации из материнской платы и карты расширения, надо посмотреть таблицы совместимости (compatibility lists) производителей обоих устройств.

PCI-X 2.0

PCI-X 2.0 - дальнейшее расширение возможностей PCI-X 1.0; добавлены частоты 266 и 533 МГц, а также - коррекция ошибок чётности при передаче данных (ECC ). Допускает расщепление на 4 независимых 16-битных шины, что применяется исключительно во встраиваемых и промышленных системах ; сигнальное напряжение снижено до 1,5 В, но сохранена обратная совместимость разъёмов со всеми картами, использующими сигнальное напряжение 3,3 В. В настоящее время для не профессионального сегмента рынка высокопроизводительных компьютеров (мощных рабочих станций и серверов начального уровня), в которых находит применение шина PCI-X, выпускается крайне мало материнских плат с поддержкой шины. Примером материнской платы для такого сегмента является ASUS P5K WS. В профессиональном сегменте применяется в RAID-контроллерах, в SSD-накопителях под PCI-E.

Mini PCI

Форм-фактор PCI 2.2, предназначен для использования, в основном, в ноутбуках.

PCI Express

PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O; не путать с PCI-X и PXI ) - компьютерная шина (хотя на физическом уровне шиной не является, будучи соединением типа «точка-точка»), использующая программную модель шины PCI и высокопроизводительный физический протокол , основанный на последовательной передаче данных . Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года.Развитием стандарта PCI Express занимается организация PCI Special Interest Group.

В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда . Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором. Кроме того, шиной PCI Express поддерживается:

  • горячая замена карт;
  • гарантированная полоса пропускания (QoS );
  • управление энергопотреблением;
  • контроль целостности передаваемых данных.

Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X . Де-факто PCI Express заменила эти шины в персональных компьютерах.

  • MiniCard (Mini PCIe ) - замена форм-фактора Mini PCI . На разъём Mini Card выведены шины: x1 PCIe, 2.0 и SMBus.
    • M.2 - вторая версия Mini PCIe, до x4 PCIe и SATA.
  • ExpressCard - подобен форм-фактору PCMCIA . На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
  • AdvancedTCA , MicroTCA - форм-фактор для модульного телекоммуникационного оборудования.
  • Mobile PCI Express Module (MXM) - промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA . Его используют для подключения графических ускорителей.
  • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении.
  • StackPC - спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения StackPC , FPE и их взаимное расположение.

Несмотря на то, что стандарт допускает x32 линий на порт, такие решения физически достаточно громоздки и не выпускаются.

Год
выпуска
Версия
PCI Express
Кодирование Скорость
передачи
Пропускная способность на x линий
×1 ×2 ×4 ×8 ×16
2002 1.0 8b/10b 2,5 ГТ/с 2 4 8 16 32
2007 2.0 8b/10b 5 ГТ/с 4 8 16 32 64
2010 3.0 128b/130b 8 ГТ/с ~7,877 ~15,754 ~31,508 ~63,015 ~126,031
2017 4.0 128b/130b 16 ГТ/с ~15,754 ~31,508 ~63,015 ~126,031 ~252,062
2019
5.0 128b/130b 32 ГТ/с ~32 ~64 ~128 ~256 ~512

PCI Express 2.0

Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года . Основные нововведения в PCI Express 2.0:

  • Увеличенная пропускная способность: ПСП одной линии 500 МБ/с, или 5 ГТ/с (Гигатранзакций/с ).
  • Внесены усовершенствования в протокол передачи между устройствами и программную модель.
  • Динамическое управление скоростью (для управления скоростью работы связи).
  • Оповещение о пропускной способности (для оповещения ПО об изменениях скорости и ширины шины).
  • Службы управления доступом - опциональные возможности управления транзакциями точка-точка.
  • Управление таймаутом выполнения.
  • Сброс на уровне функций - опциональный механизм для сброса функций (англ. PCI functions) внутри устройства (англ. PCI device).
  • Переопределение предела по мощности (для переопределения лимита мощности слота при присоединении устройств, потребляющих бо́льшую мощность).

PCI Express 2.0 полностью совместим с PCI Express 1.1 (старые будут работать в системных платах с новыми разъемами, но только на скорости 2,5 ГТ/с, так как старые чипсеты не могут поддерживать удвоенную скорость передачи данных; новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.).

PCI Express 2.1

По физическим характеристикам (скорость, разъём) соответствует 2.0, в программной части добавлены функции, которые в полной мере планируют внедрить в версии 3.0. Так как большинство системных плат продаются с версией 2.0, наличие только видеокарты с 2.1 не даёт задействовать режим 2.1.

PCI Express 3.0

В ноябре 2010 года были утверждены спецификации версии PCI Express 3.0. Интерфейс обладает скоростью передачи данных 8 GT/s (Гигатранзакций/с ). Но, несмотря на это, его реальная пропускная способность всё равно была увеличена вдвое по сравнению со стандартом PCI Express 2.0. Этого удалось достигнуть благодаря более агрессивной схеме кодирования 128b/130b, когда 128 бит данных, пересылаемых по шине, кодируются 130 битами. При этом сохранилась полная совместимость с предыдущими версиями PCI Express. Карты PCI Express 1.x и 2.x будут работать в разъёме 3.0 и, наоборот, карта PCI Express 3.0 будет работать в разъёмах 1.х и 2.х.

PCI Express 4.0

PCI Special Interest Group (PCI SIG) заявила, что PCI Express 4.0 может быть стандартизирован до конца 2016 года, однако на середину 2016 года, когда ряд чипов уже готовился к изготовлению, СМИ сообщали, что стандартизация ожидается в начале 2017. Ожидается, что он будет иметь пропускную способность 16 GT/s, то есть будет в два раза быстрее PCIe 3.0.

Оставьте свой комментарий!

Loading...Loading...